Physics-Informed Graph Convolutional Neural Networks: A Unified Framework for Solving PDE-Governed Forward and Inverse Problems

2021 ◽  
Author(s):  
Han Gao ◽  
Jian-Xun Wang
Author(s):  
Chunlei Liu ◽  
Wenrui Ding ◽  
Xin Xia ◽  
Yuan Hu ◽  
Baochang Zhang ◽  
...  

Binarized  convolutional neural networks (BCNNs) are widely used to improve memory and computation efficiency of deep convolutional neural networks (DCNNs) for mobile and AI chips based applications. However, current BCNNs are not able to fully explore their corresponding full-precision models, causing a significant performance gap between them. In this paper, we propose rectified binary convolutional networks (RBCNs), towards optimized BCNNs, by combining full-precision kernels and feature maps to rectify the binarization process in a unified framework. In particular, we use a GAN to train the 1-bit binary network with the guidance of its corresponding full-precision model, which significantly improves the performance of BCNNs. The rectified convolutional layers are generic and flexible, and can be easily incorporated into existing DCNNs such as WideResNets and ResNets. Extensive experiments demonstrate the superior performance of the proposed RBCNs over state-of-the-art BCNNs. In particular, our method shows strong generalization on the object tracking task.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Feng Wang ◽  
Alberto Eljarrat ◽  
Johannes Müller ◽  
Trond R. Henninen ◽  
Rolf Erni ◽  
...  

2022 ◽  
Vol 40 (4) ◽  
pp. 1-27
Author(s):  
Hongwei Wang ◽  
Jure Leskovec

Label Propagation Algorithm (LPA) and Graph Convolutional Neural Networks (GCN) are both message passing algorithms on graphs. Both solve the task of node classification, but LPA propagates node label information across the edges of the graph, while GCN propagates and transforms node feature information. However, while conceptually similar, theoretical relationship between LPA and GCN has not yet been systematically investigated. Moreover, it is unclear how LPA and GCN can be combined under a unified framework to improve the performance. Here we study the relationship between LPA and GCN in terms of feature/label influence , in which we characterize how much the initial feature/label of one node influences the final feature/label of another node in GCN/LPA. Based on our theoretical analysis, we propose an end-to-end model that combines GCN and LPA. In our unified model, edge weights are learnable, and the LPA serves as regularization to assist the GCN in learning proper edge weights that lead to improved performance. Our model can also be seen as learning the weights of edges based on node labels, which is more direct and efficient than existing feature-based attention models or topology-based diffusion models. In a number of experiments for semi-supervised node classification and knowledge-graph-aware recommendation, our model shows superiority over state-of-the-art baselines.


Sign in / Sign up

Export Citation Format

Share Document