scholarly journals Rectified Binary Convolutional Networks for Enhancing the Performance of 1-bit DCNNs

Author(s):  
Chunlei Liu ◽  
Wenrui Ding ◽  
Xin Xia ◽  
Yuan Hu ◽  
Baochang Zhang ◽  
...  

Binarized  convolutional neural networks (BCNNs) are widely used to improve memory and computation efficiency of deep convolutional neural networks (DCNNs) for mobile and AI chips based applications. However, current BCNNs are not able to fully explore their corresponding full-precision models, causing a significant performance gap between them. In this paper, we propose rectified binary convolutional networks (RBCNs), towards optimized BCNNs, by combining full-precision kernels and feature maps to rectify the binarization process in a unified framework. In particular, we use a GAN to train the 1-bit binary network with the guidance of its corresponding full-precision model, which significantly improves the performance of BCNNs. The rectified convolutional layers are generic and flexible, and can be easily incorporated into existing DCNNs such as WideResNets and ResNets. Extensive experiments demonstrate the superior performance of the proposed RBCNs over state-of-the-art BCNNs. In particular, our method shows strong generalization on the object tracking task.

2019 ◽  
Vol 277 ◽  
pp. 02024 ◽  
Author(s):  
Lincan Li ◽  
Tong Jia ◽  
Tianqi Meng ◽  
Yizhe Liu

In this paper, an accurate two-stage deep learning method is proposed to detect vulnerable plaques in ultrasonic images of cardiovascular. Firstly, a Fully Convonutional Neural Network (FCN) named U-Net is used to segment the original Intravascular Optical Coherence Tomography (IVOCT) cardiovascular images. We experiment on different threshold values to find the best threshold for removing noise and background in the original images. Secondly, a modified Faster RCNN is adopted to do precise detection. The modified Faster R-CNN utilize six-scale anchors (122,162,322,642,1282,2562) instead of the conventional one scale or three scale approaches. First, we present three problems in cardiovascular vulnerable plaque diagnosis, then we demonstrate how our method solve these problems. The proposed method in this paper apply deep convolutional neural networks to the whole diagnostic procedure. Test results show the Recall rate, Precision rate, IoU (Intersection-over-Union) rate and Total score are 0.94, 0.885, 0.913 and 0.913 respectively, higher than the 1st team of CCCV2017 Cardiovascular OCT Vulnerable Plaque Detection Challenge. AP of the designed Faster RCNN is 83.4%, higher than conventional approaches which use one-scale or three-scale anchors. These results demonstrate the superior performance of our proposed method and the power of deep learning approaches in diagnose cardiovascular vulnerable plaques.


2021 ◽  
Author(s):  
Veerayuth Kittichai ◽  
Morakot Kaewthamasorn ◽  
Suchansa Thanee ◽  
Rangsan Jomtarak ◽  
Kamonpob Klanboot ◽  
...  

Abstract Background: The infections of an avian malaria parasite (Plasmodium gallinaceum) in domestic chickens presents a major threat to poultry industry because it cause economical loss in both quality and quantity of meat and egg productions. Deep learning algorithms have been developed to identify avian malaria infections and classify its blood stage development. Methods: In this study, four types of deep convolutional neural networks namely Darknet, Darknet19, darknet19_448x448 and Densenet 201 are used to classify P. gallinaceum blood stages. We randomly collected dataset of 10,548 single-cell images consisting of four parasite stages from ten-infected blood films stained by Giemsa. All images were confirmed by three well-trained examiners. Results: In the model-wise comparison, the four neural network models gave us high values in the mean average precision at least 95%. Darknet can reproduce a superior performance in classification of the P. gallinaceum development stages across any other model architectures. In addition, Darknet also has best performance in multiple class-wise classification, scoring the average values of greater than 99% in accuracy, specificity, sensitivity, precision, and F1-score.Conclusions: Therefore, Darknet model is more suitable in the classification of P. gallinaceum blood stages than the other three models. The result may contribute us to develop the rapid screening tool for further assist non-expert in filed study where is lack of specific instrument for avian malaria diagnostic.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Md Zahangir Alom ◽  
Paheding Sidike ◽  
Mahmudul Hasan ◽  
Tarek M. Taha ◽  
Vijayan K. Asari

In spite of advances in object recognition technology, handwritten Bangla character recognition (HBCR) remains largely unsolved due to the presence of many ambiguous handwritten characters and excessively cursive Bangla handwritings. Even many advanced existing methods do not lead to satisfactory performance in practice that related to HBCR. In this paper, a set of the state-of-the-art deep convolutional neural networks (DCNNs) is discussed and their performance on the application of HBCR is systematically evaluated. The main advantage of DCNN approaches is that they can extract discriminative features from raw data and represent them with a high degree of invariance to object distortions. The experimental results show the superior performance of DCNN models compared with the other popular object recognition approaches, which implies DCNN can be a good candidate for building an automatic HBCR system for practical applications.


2019 ◽  
Vol 11 (22) ◽  
pp. 2608 ◽  
Author(s):  
Dong Wang ◽  
Ying Li ◽  
Li Ma ◽  
Zongwen Bai ◽  
Jonathan Chan

In recent years, convolutional neural networks (CNNs) have shown promising performance in the field of multispectral (MS) and panchromatic (PAN) image fusion (MS pansharpening). However, the small-scale data and the gradient vanishing problem have been preventing the existing CNN-based fusion approaches from leveraging deeper networks that potentially have better representation ability to characterize the complex nonlinear mapping relationship between the input (source) and the targeting (fused) images. In this paper, we introduce a very deep network with dense blocks and residual learning to tackle these problems. The proposed network takes advantage of dense connections in dense blocks that have connections for arbitrarily two convolution layers to facilitate gradient flow and implicit deep supervision during training. In addition, reusing feature maps can reduce the number of parameters, which is helpful for reducing overfitting that resulted from small-scale data. Residual learning is explored to reduce the difficulty for the model to generate the MS image with high spatial resolution. The proposed network is evaluated via experiments on three datasets, achieving competitive or superior performance, e.g. the spectral angle mapper (SAM) is decreased over 10% on GaoFen-2, when compared with other state-of-the-art methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew Lagree ◽  
Majidreza Mohebpour ◽  
Nicholas Meti ◽  
Khadijeh Saednia ◽  
Fang-I. Lu ◽  
...  

AbstractBreast cancer is currently the second most common cause of cancer-related death in women. Presently, the clinical benchmark in cancer diagnosis is tissue biopsy examination. However, the manual process of histopathological analysis is laborious, time-consuming, and limited by the quality of the specimen and the experience of the pathologist. This study's objective was to determine if deep convolutional neural networks can be trained, with transfer learning, on a set of histopathological images independent of breast tissue to segment tumor nuclei of the breast. Various deep convolutional neural networks were evaluated for the study, including U-Net, Mask R-CNN, and a novel network (GB U-Net). The networks were trained on a set of Hematoxylin and Eosin (H&E)-stained images of eight diverse types of tissues. GB U-Net demonstrated superior performance in segmenting sites of invasive diseases (AJI = 0.53, mAP = 0.39 & AJI = 0.54, mAP = 0.38), validated on two hold-out datasets exclusively containing breast tissue images of approximately 7,582 annotated cells. The results of the networks, trained on images independent of breast tissue, demonstrated that tumor nuclei of the breast could be accurately segmented.


2021 ◽  
Vol 11 (7) ◽  
pp. 3155
Author(s):  
Guo-Shiang Lin ◽  
Kuan-Ting Lai ◽  
Jian-Ming Syu ◽  
Jen-Yung Lin ◽  
Sin-Kuo Chai

In this paper, an efficient instance segmentation scheme based on deep convolutional neural networks is proposed to deal with unconstrained psoriasis images for computer-aided diagnosis. To achieve instance segmentation, the You Only Look At CoefficienTs (YOLACT) network composed of backbone, feature pyramid network (FPN), Protonet, and prediction head is used to deal with psoriasis images. The backbone network is used to extract feature maps from an image, and FPN is designed to generate multiscale feature maps for effectively classifying and localizing objects with multiple sizes. The prediction head is used to predict the classification information, bounding box information, and mask coefficients of objects. Some prototypes generated by Protonet are combined with mask coefficients to estimate the pixel-level shapes for objects. To achieve instance segmentation for unconstrained psoriasis images, YOLACT++ with a pretrained model is retrained via transfer learning. To evaluate the performance of the proposed scheme, unconstrained psoriasis images with different severity levels are collected for testing. As for subjective testing, the psoriasis regions and normal skin areas can be located and classified well. The four performance indices of the proposed scheme were higher than 93% after cross validation. About object localization, the Mean Average Precision (mAP) rates of the proposed scheme were at least 85.9% after cross validation. As for efficiency, the frames per second (FPS) rate of the proposed scheme reached up to 15. In addition, the F1_score and the execution speed of the proposed scheme were higher than those of the Mask Region-Based Convolutional Neural Networks (R-CNN)-based method. These results show that the proposed scheme based on YOLACT++ can not only detect psoriasis regions but also distinguish psoriasis pixels from background and normal skin pixels well. Furthermore, the proposed instance segmentation scheme outperforms the Mask R-CNN-based method for unconstrained psoriasis images.


2019 ◽  
Vol 9 (8) ◽  
pp. 1692-1704
Author(s):  
Wei Chen ◽  
Qiang Sun ◽  
Jue Wang ◽  
Huiqun Wu ◽  
Hui Zhou ◽  
...  

Most current automated phonocardiogram (PCG) classification methods are relied on PCG segmentation. It is universal to make use of the segmented PCG signals and then extract efficiency features for computer-aided auscultation or heart sound classification. However, the accurate segmentation of the fundamental heart sounds depends greatly on the quality of the heart sound signals. In addition these methods that heavily relied on segmentation algorithm considerably increase the computational burden. To solve above two issues, we have developed a novel approach to classify normal and abnormal cardiac diseases with un-segmented PCG signals. A deep Convolutional Neural Networks (DCNNs) method is proposed for recognizing normal and abnormal cardiac diseases. In the proposed method, one-dimensional heart sound signals are first converted into twodimensional feature maps which have three channels and each of them represents Mel-frequency spectral coefficients (MFSC) features including static, delta and delta–delta. These artificial images are then fed to the proposed DCNNs to train and evaluate normal and abnormal heart sound signals. We combined the method of majority vote strategy to finally obtain the category of PCG signals. Sensitivity (Se), Specificity (Sp) and Mean accuracy (MAcc) are used as the evaluation metrics. Results: Experiments demonstrated that our approach achieved a significant improvement, with the high Se, Sp, and MAcc of 92.73%, 96.90% and 94.81% respectively. The proposed method improves the MAcc by 5.63% compared with the best result in the CinC Challenge 2016. In addition, it has better robustness performance when applying for the long heart sounds. The proposed DCNNs-based method can achieve the best accuracy performance on recognizing normal and abnormal heart sounds without the preprocessing of segmental algorithm. It significantly improves the classification performance compared with the current state-of-art algorithm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Veerayuth Kittichai ◽  
Morakot Kaewthamasorn ◽  
Suchansa Thanee ◽  
Rangsan Jomtarak ◽  
Kamonpob Klanboot ◽  
...  

AbstractThe infection of an avian malaria parasite (Plasmodium gallinaceum) in domestic chickens presents a major threat to the poultry industry because it causes economic loss in both the quality and quantity of meat and egg production. Computer-aided diagnosis has been developed to automatically identify avian malaria infections and classify the blood infection stage development. In this study, four types of deep convolutional neural networks, namely Darknet, Darknet19, Darknet19-448 and Densenet201 are used to classify P. gallinaceum blood stages. We randomly collected a dataset of 12,761 single-cell images consisting of three parasite stages from ten-infected blood films stained by Giemsa. All images were confirmed by three well-trained examiners. The study mainly compared several image classification models and used both qualitative and quantitative data for the evaluation of the proposed models. In the model-wise comparison, the four neural network models gave us high values with a mean average accuracy of at least 97%. The Darknet can reproduce a superior performance in the classification of the P. gallinaceum development stages across any other model architectures. Furthermore, the Darknet has the best performance in multiple class-wise classification, with average values of greater than 99% in accuracy, specificity, and sensitivity. It also has a low misclassification rate (< 1%) than the other three models. Therefore, the model is more suitable in the classification of P. gallinaceum blood stages. The findings could help us create a fast-screening method to help non-experts in field studies where there is a lack of specialized instruments for avian malaria diagnostics.


Sign in / Sign up

Export Citation Format

Share Document