Introduction to ISO 10303—the STEP Standard for Product Data Exchange

2001 ◽  
Vol 1 (1) ◽  
pp. 102-103 ◽  
Author(s):  
Michael J. Pratt
2017 ◽  
Vol 5 (1) ◽  
pp. 54-67 ◽  
Author(s):  
Alain Pfouga ◽  
Josip Stjepandić

Abstract With their practical introduction by the 1970s, virtual product data have emerged to a primary technical source of intelligence in manufacturing. Modern organization have since then deployed and continuously improved strategies, methods and tools to feed the individual needs of their business domains, multidisciplinary teams, and supply chain, mastering the growing complexity of virtual product development. As far as product data are concerned, data exchange, 3D visualization, and communication are crucial processes for reusing manufacturing intelligence across lifecycle stages. Research and industry have developed several CAD interoperability, and visualization formats to uphold these product development strategies. Most of them, however, have not yet provided sufficient integration capabilities required for current digital transformation needs, mainly due to their lack of versatility in the multi-domains of the product lifecycle and primary focus on individual product descriptions. This paper analyses the methods and tools used in virtual product development to leverage 3D CAD data in the entire life cycle based on industrial standards. It presents a set of versatile concepts for mastering exchange, aware and unaware visualization and collaboration from single technical packages fit purposely for various domains and disciplines. It introduces a 3D master document utilizing PDF techniques, which fulfills requirements for electronic discovery and enables multi-domain collaboration and long-term data retention for the digital enterprise. Highlights With their practical introduction by the 1970s, virtual product data have emerged to a primary technical source of intelligence in manufacturing. Modern organization have since then deployed and continuously improved strategies, methods and tools to feed the individual needs of their business domains, multidisciplinary teams, and supply chain, mastering the growing complexity of virtual product development. As far as product data are concerned, data exchange, 3D visualization, and communication are crucial processes for reusing manufacturing intelligence across lifecycle stages. Research and industry have developed several CAD interoperability, and visualization formats to uphold these product development strategies. Most of them, however, have not yet provided sufficient integration capabilities required for current digital transformation needs, mainly due to their lack of versatility in the multi-domains of the product lifecycle and primary focus on individual product descriptions. This paper analyses the methods and tools used in virtual product development to leverage 3D CAD data in the entire life cycle. It presents a set of versatile concepts for mastering exchange, aware and unaware visualization and collaboration from single technical packages fit purposely for various domains and disciplines. It introduces a 3D master document utilizing PDF techniques, which fulfills requirements for electronic discovery and enables multi-domain collaboration and long-term data retention for the digital enterprise. 3D interoperability makes an important contribution to engineering collaboration. Several formats made to that end successively deal with challenges of their time. Some of these such as STEP are highly verbose formats, which gradually encapsulate all information necessary to define a product, its manufacture, and lifecycle support. Others are focusing best on lightweight visualization use cases and endure better with increasing size and complexity of data. Traditional formats like STEP and JT, though, are not capable of supporting the publishing activity in even broader fashion. New tendencies therefore are aiming at strengthening these individual formats through combination with complementary standards or by using document-based approaches. Unlike STEP or JT, 3D PDF can serve multiple purposes and leverages 3D data downstream throughout the product lifecycle to create, distribute and manage ubiquitous, highly consumable, role-specific rich renditions. Based on its container structure, 3D PDF is a fundamentally different approach from traditional experience established in product development – it is an exceptionally proficient contextual aggregation of multi-domain and multi-disciplinary product data. The manufacturing community should embrace it as an addition and great improvement to current engineering collaboration standards. All engineering components required for its descriptions are meanwhile published international standards. The productive use of 3D PDF for sure requires a change in the current mode of operation, be it simply because the traditional CAD model promptly demands new technical descriptions. More perspectives, which have not been primary focus of this approach need to be addressed in order to implement the 3D digital master concept of this paper in the industry. For the complete process to work properly, the actual workflows of today's business organizations must succeed a readiness check involving enhanced technical documentation capabilities of the authoring (CAx) applications based on 3D, PLM, and manufacturing workflows as well as new ways for engineering data communication with supply chain partners in the digital enterprise.


Author(s):  
Adarsh Venkiteswaran ◽  
Sayed Mohammad Hejazi ◽  
Deepanjan Biswas ◽  
Jami J. Shah ◽  
Joseph K. Davidson

Industries are continuously trying to improve the time to market through automation and optimization of existing product development processes. Large companies vow to save significant time and resources through seamless communication of data between design, manufacturing, supply chain and quality assurance teams. In this context, Model Based Definition/Engineering (MBD) / (MBE) has gained popularity, particularly in its effort to replace traditional engineering drawings and documentations with a unified digital product model in a multi-disciplinary environment. Widely used 3D data exchange models (STEP AP 203, 214) contains mere shape information, which does not provide much value for reuse in downstream manufacturing applications. However, the latest STEP AP 242 (ISO 10303-242) “Managed model based 3D engineering” aims to support smart manufacturing by capturing semantic Product Manufacturing Information (PMI) within the 3D model and also helping with long-term archival. As a primary, for interoperability of Geometric Dimensions & Tolerances (GD&T) through AP 242, CAx Implementor Forum has published a set of recommended practices for the implementation of a translator. In line with these recommendations, this paper discusses the implementation of an AP 203 to AP 242 translator by attaching semantic GD&T available in an in-house Constraint Tolerance Graph (CTF) file. Further, semantic GD&T data can be automatically consumed by downstream applications such as Computer Aided Process Planning (CAPP), Computer Aided Inspection (CAI), Computer Aided Tolerance Systems (CATS) and Coordinate Measuring Machines (CMM). Also, this paper will briefly touch base on the important elements that will constitute a comprehensive product data model for model-based interoperability.


2006 ◽  
Vol 532-533 ◽  
pp. 1100-1103
Author(s):  
Zhou Yang Li ◽  
Xi Tian Tian ◽  
Guo Ding Chen

To solve the problems of product data exchange and sharing between CAD, CAPP, CAM and CNC systems, a CAD/CAPP/CAM/CNC integrated system model is established according to STEP-NC standards. STEP-NC files are used to represent product data in form of neutral file, by which data exchange and sharing can be realized in the integrated system. Furthermore, the key integration technologies including integrated system data modeling, feature conversion are discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document