system model
Recently Published Documents





2022 ◽  
Johann Jungclaus ◽  
S J Lorenz ◽  
H Schmidt ◽  
V Brovkin ◽  
N Brüggemann ◽  

2022 ◽  
Vol 183 (1-2) ◽  
pp. 67-96
David de Frutos Escrig ◽  
Maciej Koutny ◽  
Łukasz Mikulski

In reversible computations one is interested in the development of mechanisms allowing to undo the effects of executed actions. The past research has been concerned mainly with reversing single actions. In this paper, we consider the problem of reversing the effect of the execution of groups of actions (steps). Using Petri nets as a system model, we introduce concepts related to this new scenario, generalising notions used in the single action case. We then present properties arising when reverse actions are allowed in place/transition nets (PT-nets). We obtain both positive and negative results, showing that allowing steps makes reversibility more problematic than in the interleaving/sequential case. In particular, we demonstrate that there is a crucial difference between reversing steps which are sets and those which are true multisets. Moreover, in contrast to sequential semantics, splitting reverses does not lead to a general method for reversing bounded PT-nets. We then show that a suitable solution can be obtained by combining split reverses with weighted read arcs.

2022 ◽  
Chia-Te Chien ◽  
Jonathan V. Durgadoo ◽  
Dana Ehlert ◽  
Ivy Frenger ◽  
David P. Keller ◽  

Abstract. The consideration of marine biogeochemistry is essential for simulating the carbon cycle in an Earth system model. Here we present the implementation and evaluation of a marine biogeochemical model, Model of Oceanic Pelagic Stoichiometry (MOPS) in the Flexible Ocean and Climate Infrastructure (FOCI) climate model. FOCI-MOPS enables the simulation of marine biological processes, the marine carbon, nitrogen and oxygen cycles, air-sea gas exchange of CO2 and O2, and simulations with prescribed atmospheric CO2 or CO2 emissions. A series of experiments covering the historical period (1850–2014) were performed following the DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP6 (Coupled Model Intercomparison Project 6) protocols. Overall, modelled biogeochemical tracer distributions and fluxes, as well as transient evolution in surface air temperature, air-sea CO2 fluxes, and changes of ocean carbon and heat, are in good agreement with observations. Modelled inorganic and organic tracer distributions are quantitatively evaluated by statistically-derived metrics. Results of the FOCI-MOPS model, also including sea surface temperature, surface pH, oxygen (100–600 m), nitrate (0–100 m), and primary production, are within the range of other CMIP6 model results. Overall, the evaluation of FOCI-MOPS indicates its suitability for Earth climate system simulations.

Ning Xu ◽  
Honglin Zhao ◽  
Yufang Li ◽  
Yingying Wang ◽  
Shimin Zhang

The next-generation underwater production system (NUPS) is based on the suspension cluster manifold (SCM) as a new conceptual scheme. SCM mooring stability is essential for establishing NUPS. Therefore, comparing the SCM mooring stability in different mooring systems is vital for evaluating system adaptability. This paper detailed two mooring schemes designed for the SCM, including the steel catenary riser (SCR) mooring system and the new steep wave (NSWR) mooring system. OrcaFlex software was used to establish the mooring system model, analyzing the static motion response of the SCM under the current and fluid density. Furthermore, the mooring system adaptability in the cluster wellhead layout was also evaluated and compared. The results showed that the maximum offset of the SCM with the SCR mooring system was within 2 m under the current, while the deflection of the SCM with the NSWR mooring system was within 1.5° in extreme fluid densities. Furthermore, the SCM with the SCR mooring system displayed superior station-keeping capability in the current, while the NSWR mooring system exhibited better stability when transporting extreme fluid densities and was more adaptable in cluster wellhead layouts.

Sign in / Sign up

Export Citation Format

Share Document