scholarly journals Making a Mesh of Things

2003 ◽  
Vol 125 (09) ◽  
pp. 54-56 ◽  
Author(s):  
Jean Thilmany

Models need to be meshed and made acceptable for analysis before finite element analysis (FEA) can be run. Software providers that make pre-processing applications must keep up with changes in FEA technology to remain competitive. The mesh contains the data on material and structural properties that define how the part will react to certain load conditions. Today's closely integrated computer-aided design (CAD), pre-processing, and FEA applications allow CAD and entry-level FEA technologies to work together within a common user interface and give design engineers a quick, effortless way to see if their designs will meet specifications. Simplifying the FEA programs so a design engineer can use them limits the intricacy of the mesh as well as the depth of analysis. HyperMesh prepares CAD geometries for analysis. The meshed geometries are then exported to Procter & Gamble's customized package analysis system called Virtual Package Simulation. Today, engineers use mesh technologies and attendant FEA programs for an array of analyses. Some are related to manufacturing, but as often as not they've found their way into other industries.

Author(s):  
Vladimir Panchenko ◽  
Valeriy Kharchenko

This chapter discusses the simulation of solar photovoltaic thermal modules of planar and concentrator structures in computer-aided design systems KOMPAS 3D and finite element analysis ANSYS. To create photovoltaic thermal modules, a method for designing their three-dimensional models in the computer-aided design system has been developed. To study the thermal regimes of the created three-dimensional models of modules, a method has been developed for visualizing thermal processes, coolant velocity, and flow lines of a cooling agent in a finite element analysis system. As a result of calculations in the finite element analysis system using the developed method, conclusions can be drawn about the feasibility of the design created with its further editing, visualization of thermal fields, and current lines of the radiator cooling agent. As an illustration of the simulation results, a three-dimensional model of a photovoltaic thermal planar roofing panel and an optimized three-dimensional model of a photodetector of a solar concentrator photovoltaic thermal module are presented.


2018 ◽  
Vol 7 (4.27) ◽  
pp. 148
Author(s):  
Wan Muhammad Syahmi Wan Fauzi ◽  
Abdul Rahman Omar ◽  
Helmi Rashid

Recently, studies concerning motorcycle have been an overwhelming area of research interest. As an alternative to the real world assessment, researchers have utilized motorcycle simulator as a workstation to conduct studies in the motorcycle niche area. This paper deal with the development of a new motorcycle simulator named Semi-Interface Motorcycle Simulator (SiMS). Combination of Computer Aided Design (CAD) and Finite Element Analysis (FEA) software made it possible to design and simulates the motorcycle simulator’s conceptual design before being fabricated. The SiMS setup not only provides a near-to-real and immerse motorcycle riding experience on a super sport motorcycle model, but it also allows safer high speed motorcycle simulations to be conducted in a controlled environment that is portable and ergonomically easier to transport to various venues.  


Author(s):  
Kathleen L. Kitto

Finite Element Analysis (FEA) and Computer Aided Design (CAD) have been integrated into our Introductory Materials Engineering course and certain undergraduate independent research experiences at Western Washington University. The key idea underlying these modifications to the curriculum is to increase active student interest and involvement in their own learning. Active learning does indeed promote the way students construct their own understanding of materials engineering design solutions. Since a diverse group of students learn in many different ways, delivering curriculum in multiple ways increases the probability of improving student learning. During the past four years, several strategies have been implemented in our Introduction to Materials Engineering course to transform it from a traditional lecture-centric class to an active, “learner-centered” environment. Case studies, problem based learning (PBL), concept questions, stringed musical instrument design, and active, in-class demonstrations have all been integrated into the course during this transformation. Recent additions to this new course strategy have been the integration of Computer Aided Design (CAD) and Finite Element Analysis (FEA) illustrations and animations as in-class dynamic demonstrations and applications. In this course, the students must master the ability to use fundamental materials properties such as: tensile strength, yield strength, modulus of elasticity, Poisson’s ratio, flexural strength, hardness, fatigue limit/life, and creep life, so they can correctly select a material for a simple design case given multiple engineering constraints. Since so much of this course is design and applications based, FEA makes an ideal compliment to the other active and conceptual strategies. This paper, then, describes the new FEA and CAD additions and strategies to the course. In addition, the changes in the Introduction to Materials Engineering course have generated a great deal of student interest in completing independent research projects investigating materials for stringed musical instruments and numerous research projects have been completed. The most impressive of these, the design and production of a carbon fiber composite violin using all computer-based tools and an independent research project on guitar design are described. Finally, the paper provides an initial assessment analysis that shows students improving on classical test problem scores, having an enhanced ability to complete a more complex final design problem, and demonstrating increased interest in engineering design.


Sign in / Sign up

Export Citation Format

Share Document