analysis system
Recently Published Documents





2022 ◽  
Vol 11 (1) ◽  
pp. 61
Emmanouil Psomiadis

The present study provides information about the evolution of the Sperchios River deltaic area over the last 6500 years. Coastal changes, due to natural phenomena and anthropogenic activities, were analyzed utilizing a variety of geospatial data such as historic records, topographic maps, aerial photos, and satellite images, covering a period from 4500 BC to 2020. A qualitative approach for the period, from 4500 BC to 1852, and a quantitative analysis, from 1852 to the present day, were employed. Considering their scale and overall quality, the data were processed and georeferenced in detail based on the very high-resolution orthophoto datasets of the area. Then, the multitemporal shorelines were delineated in a geographical information system platform. Two different methods were utilized for the estimation of the shoreline changes and trends, namely the coastal change area method and the cross-section analysis, by implementing the digital shoreline analysis system with two statistical approaches, the end point rate and the linear regression rate. Significant river flow and coastline changes were observed with the overall increase in the delta area throughout the study period reaching 135 km2 (mean annual growth of 0.02 km2/yr) and the higher accretion rates to be detected during the periods 1805–1852, 1908–1945 and 1960–1986, especially at the central and north part of the gulf. During the last three decades, the coastline has remained relatively stable with a decreasing tendency, which, along with the expected sea-level rise due to climate change, can infer significant threats for the coastal zone in the near future.

2022 ◽  
Elizabeth Schmidt

In 2020 and 2021 the Southeast Coast Network (SECN) collected shoreline data at Fort Matanzas National Monument as a part of the NPS Vital Signs Monitoring Program. Monitoring was conducted following methods developed by the National Park Service Northeast Barrier Coast Network and consisted of mapping the high tide swash line using a global positioning system (GPS) unit in the spring of each year (Psuty et al. 2010). Shoreline change was calculated using the Digital Shoreline Analysis System (DSAS) developed by USGS (Theiler et al. 2008). Key findings from this effort: A mean of 2,255.23 meters (7,399 feet [ft]) of shoreline were mapped from 2020 to 2021 with a mean horizontal precision of 10.73 centimeters (4.2 inches [in]) at Fort Matanzas National Monument from 2020 to 2021. In the annual shoreline change analysis, the mean shoreline distance change from spring 2020 to spring 2021 was -7.40 meters (-24.3 ft) with a standard deviation of 20.24 meters (66.40 ft). The shoreline change distance ranged from -124.73 to 35.59 meters (-409.1 to 116.7 ft). Two erosion areas and one accretion area were identified in the study area beyond the uncertainty of the data (± 10 meters [32.8 ft]). The annual shoreline change from 2020 to 2021 showed erosion on the east and west sides of A1A where the Matanzas Inlet is located. Overall, the most dynamic area of shoreline change within Fort Matanzas National Monument appeared to be on the east and west side of A1A, along the Matanzas River inlet.

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 597
Ae-Ryeong Kim ◽  
Ju-Hyun Park ◽  
Si-Hyun Kim ◽  
Kwang Bok Kim ◽  
Kyue-Nam Park

The present study was performed to investigate the validity of a wireless earbud-type inertial measurement unit (Ear-IMU) sensor used to estimate head angle during four workouts. In addition, relationships between head angle obtained from the Ear-IMU sensor and the angles of other joints determined with a 3D motion analysis system were investigated. The study population consisted of 20 active volunteers. The Ear-IMU sensor measured the head angle, while a 3D motion analysis system simultaneously measured the angles of the head, trunk, pelvis, hips, and knees during workouts. Comparison with the head angle measured using the 3D motion analysis system indicated that the validity of the Ear-IMU sensor was very strong or moderate in the sagittal and frontal planes. In addition, the trunk angle in the frontal plane showed a fair correlation with the head angle determined with the Ear-IMU sensor during a single-leg squat, reverse lunge, and standing hip abduction; the correlation was poor in the sagittal plane. Our results indicated that the Ear-IMU sensor can be used to directly estimate head motion and indirectly estimate trunk motion.

2022 ◽  
Vol 12 (1) ◽  
Karolina Svensson ◽  
Simon Södergren ◽  
Klas Hjort

AbstractBy using the temperature dependence of viscosity, we introduce a novel type of microfluidic lab-on-a-chip back pressure regulator (BPR) that can be integrated into a micro-total-analysis-system. A BPR is an important component used to gain pressure control and maintain elevated pressures in e.g. chemical extractions, synthesis, and analyses. Such applications have been limited in microfluidics, since the back pressure regularly has been attained by passive restrictors or external large-scale BPRs. Herein, an active microfluidic BPR is presented, consisting of a glass chip with integrated thin-film heaters and thermal sensors. It has no moving parts but a fluid restrictor where the flow resistance is controlled by the change of viscosity with temperature. Performance was evaluated by regulating the upstream pressure of methanol or water using a PID controller. The developed BPR has the smallest reported dead volume of 3 nL and the thermal actuation has time constants of a few seconds. The pressure regulation were reproducible with a precision in the millibar range, limited by the pressure sensor. The time constant of the pressure changes was evaluated and its dependence of the total upstream volume and the compressibility of the liquids is introduced.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 553
Jaehoon Park ◽  
Chanhee Won ◽  
Hye-Jin Lee ◽  
Jonghun Yoon

In this paper, we propose a new method to estimate the hole expansion ratio (HER) using an integrated analysis system. To precisely measure the HER, three kinds of analysis methods (computer vision, punch load, and acoustic emission) were utilized to detect edge cracks during a hole expansion test. Cracks can be recognized by employing both computer vision and a punch load analysis system to determine the moment of crack initiation. However, the acoustic emission analysis system has difficulty detecting the instant of crack appearance since the magnitude of the audio signal is drowned out by noise from the press, which interrupts the differentiation of crack configuration. To enhance the accuracy for determining the HER, an integrated analysis system that combines computer vision with punch load analysis, and improves on the shortcomings of each analysis system, is newly suggested.

2022 ◽  
Vol 4 (1) ◽  
Egai Ayibawari Obiene ◽  
Eteh Desmond Rowland ◽  
Inko-Tariah Ibiso Michael

The use of Digital Shoreline Analysis System was used to determine shoreline changes in Ikoli River, Yenagoa, Bayelsa State. Shoreline data were extracted from satellite imagery over thirty years (1991-2021). The basis of this study is to use Digital Shoreline Analysis System to determine erosion and accretion areas. The result reveals that the average erosion rate in the study area is 1.16 m/year and the accretion rate is 1.62 m/year along the Ikoli River in Ogbogoro Community in Yenagoa, Bayelsa State. The mean shoreline length is 5.24 km with a baseline length of 5.2 km and the area is classified into four zones to delineate properly area of erosion and accretion based on the five class of Linear regression rate, endpoint rate and weighted linear rate of which zone I contain very high erosion and high erosion with an area of landmass 255449.93 m2 of 38%, zone II contain moderate accretion, very high accretion and high accretion with a land area of 1666816.46 m2 with 24%, zone III has very high erosion and high erosion with an area of landmass 241610.85 m2 of 34 % and zone IV contain moderate accretion and high accretion with land area 30888.08 m2 with 4%. Out of the four zones, zone I and II were found to be eroding with 72% and zone II and IV contain accretion with 28%. The result shows that 44% of the area have been eroded. Therefore, coastal engineers, planners, and shoreline zone management authorities can use DSAS to create more appropriate management plans and regulations for coastal zones and other coastal parts of the state with similar geographic features.

2022 ◽  
Vol 14 (2) ◽  
pp. 747
Md. Yousuf Gazi ◽  
A. S. M. Maksud Kamal ◽  
Md. Nazim Uddin ◽  
Md. Anwar Hossain Bhuiyan ◽  
Md. Zillur Rahman

Assessing the dynamics of Bhasan Char is very crucial, as the Government of Bangladesh (GoB) has recently selected the island as the accommodation of the FDMN. This article critically evaluates the spatiotemporal morphological variations due to erosion, accretion, and subsurface deformation of the island through multi-temporal geospatial and geophysical data analysis, groundwater quality-quantity, and also determines the nature and rate of changes from 2003 to 2020. This is the first study in this island on which multi-temporal Landsat Satellite Imagery and seismic data have been used with geospatial techniques with Digital Shoreline Analysis System (DSAS) and petrel platform, respectively. The analysis of satellite images suggests that the island first appeared in 2003 in the Bay of Bengal, then progressively evolved to the present stable condition. Significant changes have taken place in the morphological and geographical conditions of the island since its inception. Since 2012, the island has been constantly accreted by insignificant erosion. It receives tidally influenced fluvial sediments from the Ganges-Brahmaputra-Meghna (GBM) river system and the sedimentary accretion, in this case, is higher than the erosion due to relatively weaker wave action and longshore currents. It has gained approximately 68 km2 area, mostly in the northern part and because of erosion in the south. Although the migration of the Bhasan Char was ubiquitous during 2003–2012, it has been concentrated in a small area to the east since 2018. The net shoreline movements (NSM) suggest that the length of the shoreline enlarged significantly by around 39 km in 2020 from its first appearance. Seismic and GPS data clearly indicate that the island is located on the crest of a slowly uplifting low-amplitude anticline, which may result in a stable landform around the island. Based on the analysis of historical data, it has been assessed that the current configuration of Bhasan Char would not be severely affected by 10–15-foot-high cyclone. Therefore, FDMN rehabilitation here might be safer that would be a good example for future geo-environmental assessment for any areas around the world for rehabilitation of human in remote and vulnerable island. The findings of this research will facilitate the government’s decision to rehabilitate FDMN refugees to the island and also contribute to future research in this area.

2022 ◽  
Vol 9 ◽  
Xixi Luo ◽  
Quanlong Liu ◽  
Zunxiang Qiu

This paper firstly proposes a modified human factor classification analysis system (HFACS) framework based on literature analysis and the characteristics of falling accidents in construction. Second, a Bayesian network (BN) topology is constructed based on the dependence between human factors and organizational factors, and the probability distribution of the human-organizational factors in a BN risk assessment model is calculated based on falling accident reports and fuzzy set theory. Finally, the sensitivity of the causal factors is determined. The results show that 1) the most important reason for falling accidents is unsafe on-site supervision. 2) There are significant factors that influence falling accidents at different levels in the proposed model, including operation violations in the unsafe acts layer, factors related to an adverse technological environment for the unsafe acts layer, loopholes in site management in the unsafe on-site supervision layer, lack of safety culture in the adverse organizational influence layer, and lax government regulation in the adverse external environment layer. 3) According to the results of the BN risk assessment model, the most likely causes are loopholes in site management work, lack of safety culture, insufficient safety inspections and acceptance, vulnerable process management and operation violations.

Gunjan Patel ◽  
Rajani Mullerpatan ◽  
Bela Agarwal ◽  
Triveni Shetty ◽  
Rajdeep Ojha ◽  

Wearable inertial sensor-based motion analysis systems are promising alternatives to standard camera-based motion capture systems for the measurement of gait parameters and joint kinematics. These wearable sensors, unlike camera-based gold standard systems, find usefulness in outdoor natural environment along with confined indoor laboratory-based environment due to miniature size and wireless data transmission. This study reports validation of our developed (i-Sens) wearable motion analysis system against standard motion capture system. Gait analysis was performed at self-selected speed on non-disabled volunteers in indoor ( n = 15) and outdoor ( n = 8) environments. Two i-Sens units were placed at the level of knee and hip along with passive markers (for indoor study only) for simultaneous 3D motion capture using a motion capture system. Mean absolute percentage error (MAPE) was computed for spatiotemporal parameters from the i-Sens system versus the motion capture system as a true reference. Mean and standard deviation of kinematic data for a gait cycle were plotted for both systems against normative data. Joint kinematics data were analyzed to compute the root mean squared error (RMSE) and Pearson’s correlation coefficient. Kinematic plots indicate a high degree of accuracy of the i-Sens system with the reference system. Excellent positive correlation was observed between the two systems in terms of hip and knee joint angles (Indoor: hip 3.98° ± 1.03°, knee 6.48° ± 1.91°, Outdoor: hip 3.94° ± 0.78°, knee 5.82° ± 0.99°) with low RMSE. Reliability characteristics (defined using standard statistical thresholds of MAPE) of stride length, cadence, walking speed in both outdoor and indoor environment were well within the “Good” category. The i-Sens system has emerged as a potentially cost-effective, valid, accurate, and reliable alternative to expensive, standard motion capture systems for gait analysis. Further clinical trials using the i-Sens system are warranted on participants across different age groups.

Sign in / Sign up

Export Citation Format

Share Document