Mixture Model Approach for Acoustic Emission Control of Cylindrical Pressure Equipment

2005 ◽  
Vol 128 (3) ◽  
pp. 479-483
Author(s):  
Hani Hamdan ◽  
Gérard Govaert

In this paper, we present a new and original mixture model approach for acoustic emission (AE) data clustering. AE techniques have been used in a variety of applications in industrial plants. These techniques can provide the most sophisticated monitoring test and can generally be done with the plant/pressure equipment operating at several conditions. Since the AE clusters may present several constraints (different proportions, volumes, orientations, and shapes), we propose to base the AE cluster analysis on Gaussian mixture models, which will be, in such situations, a powerful approach. Furthermore, the diagonal Gaussian mixture model seems to be well adapted to the detection and monitoring of defect classes since the weldings of cylindrical pressure equipment are lengthened horizontally and vertically (cluster shapes lengthened along the axes). The EM (Expectation-Maximization) algorithm applied to a diagonal Gaussian mixture model provides a satisfactory solution but the real time constraints imposed in our problem make the application of this algorithm impossible if the number of points becomes too big. The solution that we propose is to use the CEM (Classification Expectation-Maximization) algorithm, which converges faster and generates comparable solutions in terms of resulting partition. The practical results on real data are very satisfactory from the experts point of view.

2021 ◽  
Vol 87 (9) ◽  
pp. 615-630
Author(s):  
Longjie Ye ◽  
Ka Zhang ◽  
Wen Xiao ◽  
Yehua Sheng ◽  
Dong Su ◽  
...  

This paper proposes a Gaussian mixture model of a ground filtering method based on hierarchical curvature constraints. Firstly, the thin plate spline function is iteratively applied to interpolate the reference surface. Secondly, gradually changing grid size and curvature threshold are used to construct hierarchical constraints. Finally, an adaptive height difference classifier based on the Gaussian mixture model is proposed. Using the latent variables obtained by the expectation-maximization algorithm, the posterior probability of each point is computed. As a result, ground and objects can be marked separately according to the calculated possibility. 15 data samples provided by the International Society for Photogrammetry and Remote Sensing are used to verify the proposed method, which is also compared with eight classical filtering algorithms. Experimental results demonstrate that the average total errors and average Cohen's kappa coefficient of the proposed method are 6.91% and 80.9%, respectively. In general, it has better performance in areas with terrain discontinuities and bridges.


2010 ◽  
Vol 25 (3) ◽  
pp. 908-920 ◽  
Author(s):  
Valliappa Lakshmanan ◽  
John S. Kain

Abstract Verification methods for high-resolution forecasts have been based either on filtering or on objects created by thresholding the images. The filtering methods do not easily permit the use of deformation while identifying objects based on thresholds can be problematic. In this paper, a new approach is introduced in which the observed and forecast fields are broken down into a mixture of Gaussians, and the parameters of the Gaussian mixture model fit are examined to identify translation, rotation, and scaling errors. The advantages of this method are discussed in terms of the traditional filtering or object-based methods and the resulting scores are interpreted on a standard verification dataset.


Sign in / Sign up

Export Citation Format

Share Document