assembly systems
Recently Published Documents





Christoph Nicksch ◽  
Alexander K. Hüttner ◽  
Robert H. Schmitt

AbstractIn Line-less Mobile Assembly Systems (LMAS) the mobilization of assembly resources and products enables rapid physical system reconfigurations to increase flexibility and adaptability. The clean-floor approach discards fixed anchor points, so that assembly resources such as mobile robots and automated guided vehicles transporting products can adapt to new product requirements and form new assembly processes without specific layout restrictions. An associated challenge is spatial referencing between mobile resources and product tolerances. Due to the missing fixed points, there is a need for more positioning data to locate and navigate assembly resources. Distributed large-scale metrology systems offer the capability to cover a wide shop floor area and obtain positioning data from several resources simultaneously with uncertainties in the submillimeter range. The positioning of transmitter units of these systems becomes a demanding task taking visibility during dynamic processes and configuration-dependent measurement uncertainty into account. This paper presents a novel approach to optimize the position configuration of distributed large-scale metrology systems by minimizing the measurement uncertainty for dynamic assembly processes. For this purpose, a particle-swarm-optimization algorithm has been implemented. The results show that the algorithm is capable of determining suitable transmitter positions by finding global optima in the assembly station search space verified by applying brute-force method in simulation.

2021 ◽  
pp. 2108289
Hong‐Bo Cheng ◽  
Shuchun Zhang ◽  
Enying Bai ◽  
Xiaoqiao Cao ◽  
Jiaqi Wang ◽  

Zhen Luo ◽  
Yujuan Gao ◽  
Zhongyu Duan ◽  
Yu Yi ◽  
Hao Wang

Mitochondria are well known to serve as the powerhouse for cells and also the initiator for some vital signaling pathways. A variety of diseases are discovered to be associated with the abnormalities of mitochondria, including cancers. Thus, targeting mitochondria and their metabolisms are recognized to be promising for cancer therapy. In recent years, great efforts have been devoted to developing mitochondria-targeted pharmaceuticals, including small molecular drugs, peptides, proteins, and genes, with several molecular drugs and peptides enrolled in clinical trials. Along with the advances of nanotechnology, self-assembled peptide-nanomaterials that integrate the biomarker-targeting, stimuli-response, self-assembly, and therapeutic effect, have been attracted increasing interest in the fields of biotechnology and nanomedicine. Particularly, in situ mitochondria-targeted self-assembling peptides that can assemble on the surface or inside mitochondria have opened another dimension for the mitochondria-targeted cancer therapy. Here, we highlight the recent progress of mitochondria-targeted peptide-nanomaterials, especially those in situ self-assembly systems in mitochondria, and their applications in cancer treatments.

2021 ◽  
pp. 423-430
Lea Grahn ◽  
Jonas Rachner ◽  
Amon Göppert ◽  
Sazvan Saeed ◽  
Robert H. Schmitt

Sign in / Sign up

Export Citation Format

Share Document