airborne lidar
Recently Published Documents


TOTAL DOCUMENTS

2522
(FIVE YEARS 757)

H-INDEX

76
(FIVE YEARS 12)

2022 ◽  
Vol 506 ◽  
pp. 119953
Author(s):  
Katsuhiro Nakao ◽  
Daisuke Kabeya ◽  
Yoshio Awaya ◽  
Shin Yamasaki ◽  
Ikutaro Tsuyama ◽  
...  

Fire ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Michael J. Campbell ◽  
Philip E. Dennison ◽  
Matthew P. Thompson ◽  
Bret W. Butler

Safety zones (SZs) are critical tools that can be used by wildland firefighters to avoid injury or fatality when engaging a fire. Effective SZs provide safe separation distance (SSD) from surrounding flames, ensuring that a fire’s heat cannot cause burn injury to firefighters within the SZ. Evaluating SSD on the ground can be challenging, and underestimating SSD can be fatal. We introduce a new online tool for mapping SSD based on vegetation height, terrain slope, wind speed, and burning condition: the Safe Separation Distance Evaluator (SSDE). It allows users to draw a potential SZ polygon and estimate SSD and the extent to which that SZ polygon may be suitable, given the local landscape, weather, and fire conditions. We begin by describing the algorithm that underlies SSDE. Given the importance of vegetation height for assessing SSD, we then describe an analysis that compares LANDFIRE Existing Vegetation Height and a recent Global Ecosystem Dynamics Investigation (GEDI) and Landsat 8 Operational Land Imager (OLI) satellite image-driven forest height dataset to vegetation heights derived from airborne lidar data in three areas of the Western US. This analysis revealed that both LANDFIRE and GEDI/Landsat tended to underestimate vegetation heights, which translates into an underestimation of SSD. To rectify this underestimation, we performed a bias-correction procedure that adjusted vegetation heights to more closely resemble those of the lidar data. SSDE is a tool that can provide valuable safety information to wildland fire personnel who are charged with the critical responsibility of protecting the public and landscapes from increasingly intense and frequent fires in a changing climate. However, as it is based on data that possess inherent uncertainty, it is essential that all SZ polygons evaluated using SSDE are validated on the ground prior to use.


2022 ◽  
Vol 14 (1) ◽  
pp. 235
Author(s):  
Julián Tijerín-Triviño ◽  
Daniel Moreno-Fernández ◽  
Miguel A. Zavala ◽  
Julen Astigarraga ◽  
Mariano García

Forest structure is a key driver of forest functional processes. The characterization of forest structure across spatiotemporal scales is essential for forest monitoring and management. LiDAR data have proven particularly useful for cost-effectively estimating forest structural attributes. This paper evaluates the ability of combined forest inventory data and low-density discrete return airborne LiDAR data to discriminate main forest structural types in the Mediterranean-temperate transition ecotone. Firstly, we used six structural variables from the Spanish National Forest Inventory (SNFI) and an aridity index in a k-medoids algorithm to define the forest structural types. These variables were calculated for 2770 SNFI plots. We identified the main species for each structural type using the SNFI. Secondly, we developed a Random Forest model to predict the spatial distribution of structural types and create wall-to-wall maps from LiDAR data. The k-medoids clustering algorithm enabled the identification of four clusters of forest structures. A total of six out of forty-one potential LiDAR metrics were utilized in our Random Forest, after evaluating their importance in the Random Forest model. Selected metrics were, in decreasing order of importance, the percentage of all returns above 2 m, mean height of the canopy profile, the difference between the 90th and 50th height percentiles, the area under the canopy curve, and the 5th and the 95th percentile of the return heights. The model yielded an overall accuracy of 64.18%. The producer’s accuracy ranged between 36.11% and 88.93%. Our results confirm the potential of this approximation for the continuous monitoring of forest structures, which is key to guiding forest management in this region.


Geomorphology ◽  
2022 ◽  
pp. 108106
Author(s):  
Romina Diaz-Gomez ◽  
Gregory B. Pasternack ◽  
Hervé Guillon ◽  
Colin F. Byrne ◽  
Sebastian Schwindt ◽  
...  

2022 ◽  
Vol 183 ◽  
pp. 482-495
Author(s):  
Miguel Yermo ◽  
Francisco F. Rivera ◽  
José C. Cabaleiro ◽  
David L. Vilariño ◽  
Tomás F. Pena

2021 ◽  
Vol 14 (1) ◽  
pp. 63
Author(s):  
Mary E. Gerlach ◽  
Kai C. Rains ◽  
Edgar J. Guerrón-Orejuela ◽  
William J. Kleindl ◽  
Joni Downs ◽  
...  

We hypothesized topographic features alone could be used to locate groundwater discharge, but only where diagnostic topographic signatures could first be identified through the use of limited field observations and geologic data. We built a geodatabase from geologic and topographic data, with the geologic data only covering ~40% of the study area and topographic data derived from airborne LiDAR covering the entire study area. We identified two types of groundwater discharge: shallow hillslope groundwater discharge, commonly manifested as diffuse seeps, and aquifer-outcrop groundwater discharge, commonly manifested as springs. We developed multistep manual procedures that allowed us to accurately predict the locations of both types of groundwater discharge in 93% of cases, though only where geologic data were available. However, field verification suggested that both types of groundwater discharge could be identified by specific combinations of topographic variables alone. We then applied maximum entropy modeling, a machine learning technique, to predict the prevalence of both types of groundwater discharge using six topographic variables: profile curvature range, with a permutation importance of 43.2%, followed by distance to flowlines, elevation, topographic roughness index, flow-weighted slope, and planform curvature, with permutation importance of 20.8%, 18.5%, 15.2%, 1.8%, and 0.5%, respectively. The AUC values for the model were 0.95 for training data and 0.91 for testing data, indicating outstanding model performance.


Sign in / Sign up

Export Citation Format

Share Document