An Instrument for Local Radiative Heat Transfer Measurement Around a Horizontal Tube Immersed in a Fluidized Bed

1990 ◽  
Vol 112 (2) ◽  
pp. 486-491 ◽  
Author(s):  
N. Alavizadeh ◽  
R. L. Adams ◽  
J. R. Welty ◽  
A. Goshayeshi

An instrument for the measurement of the radiative component of total heat transfer in a high-temperature gas fluidized bed is described. The main objective of this paper is to emphasize the design, instrumentation, and calibration of this device. The results are presented and discussed elsewhere (Alavizadeh, 1985; Alavizadeh et al., 1985). The design makes use of a silicon window to transmit the radiative heat flux to a thermopile-type heat flow detector located at the base of a cavity. The window material thermal conductivity is sufficiently large to prevent conduction errors due to the convective component of total heat transfer. Also, its transmission and mechanical hardness are well suited for the fluid bed environment. The device has been calibrated using a blackbody source both before and after exposure to a fluidized bed, indicating the effect of the abrasive bed environment on performance. The instrument has been used to measure local radiative heat transfer around a horizontal tube. Typical results for a particle size of 2.14 mm and a bed temperature of 1050 K are presented and discussed to illustrate instrument performance.

2002 ◽  
Vol 124 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Qiao He ◽  
Franz Winter ◽  
Ji-Dong Lu

A general numerical model is presented here to describe the complex fluid dynamics and the heat transfer process in high-temperature circulating fluidized beds (CFBs). The core-wall concept is used to describe the gas-solid flow in the dilute phase section of CFBs. The variation of the thickness of the wall layer along the height direction is considered in the fluid dynamic model in order to approach the practical conditions. Three components of heat transfer, i.e., the particle-convective heat transfer, the gas-convective heat transfer, and the radiative heat transfer, and their contributions to the total heat transfer coefficient are investigated. The influences of some operating parameters on the total heat transfer and its components are predicted. Detailed information about the mechanism of heat transfer is discussed. The radiative heat transfer accounts for about 30∼60% of the total heat transfer in high temperature CFBs. It gradually increases along the height direction of the furnace. When the contribution of particle convection increases, the contribution of gas convection decreases, and vice versa. Particle size shows a significant effect on the radiative heat transfer and the convective heat transfer. High bed and wall temperatures will primarily increase the radiative heat transfer.


Sign in / Sign up

Export Citation Format

Share Document