Analysis of the Heat Transfer Mechanism in High-Temperature Circulating Fluidized Beds by a Numerical Model

2002 ◽  
Vol 124 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Qiao He ◽  
Franz Winter ◽  
Ji-Dong Lu

A general numerical model is presented here to describe the complex fluid dynamics and the heat transfer process in high-temperature circulating fluidized beds (CFBs). The core-wall concept is used to describe the gas-solid flow in the dilute phase section of CFBs. The variation of the thickness of the wall layer along the height direction is considered in the fluid dynamic model in order to approach the practical conditions. Three components of heat transfer, i.e., the particle-convective heat transfer, the gas-convective heat transfer, and the radiative heat transfer, and their contributions to the total heat transfer coefficient are investigated. The influences of some operating parameters on the total heat transfer and its components are predicted. Detailed information about the mechanism of heat transfer is discussed. The radiative heat transfer accounts for about 30∼60% of the total heat transfer in high temperature CFBs. It gradually increases along the height direction of the furnace. When the contribution of particle convection increases, the contribution of gas convection decreases, and vice versa. Particle size shows a significant effect on the radiative heat transfer and the convective heat transfer. High bed and wall temperatures will primarily increase the radiative heat transfer.

Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini

Abstract The present paper deals with the characterization of heat transfer on blade tip Active Clearance Control manifolds. Real engine geometries and operating conditions were considered in validated CFD computations to understand the impacts of both manifold surfaces convective and radiative heat transfer on the aero-thermal performance of the system. Different manifold geometries were accounted for also. The study sorted out that both the radiation and the convective heat transfer on the manifold surfaces are responsible of performance deteriorations as the impingement heat transfer on the casing is considered. The last evidence is motivated by the fresh fluid heat up along the feeding pipe. Radiative heat transfer from the casing to the manifold is found to be relevant, especially in case of high casing temperature or low undercowl flow rates. As a result of the study, is remarked that ACC manifold radiative and convective heat transfer should be considered for a proper system design.


Sign in / Sign up

Export Citation Format

Share Document