The Influence of Slip Boundary Conditions on Peristaltic Pumping in a Rectangular Channel

2008 ◽  
Vol 130 (12) ◽  
Author(s):  
X. Mandviwalla ◽  
R. Archer

The flow of an incompressible fluid is modeled in a channel of a rectangular cross section with two symmetric peristaltic waves propagating on the top and bottom. A low Reynolds number and a long wavelength are assumed. The effect on pumping of the inclusion of slip boundary conditions on the side walls is investigated.

2005 ◽  
Vol 35 (7) ◽  
pp. 1263-1278 ◽  
Author(s):  
Baylor Fox-Kemper

Abstract Multiple-gyre ocean models have a weaker mean subtropical circulation than single-gyre calculations with the same viscosity and subtropical forcing. Traditionally, this reduction in circulation is attributed to an intergyre eddy vorticity flux that cancels some of the wind input, part of which does not require a Lagrangian mass exchange (theory of dissipative meandering). Herein the intergyre eddy vorticity flux is shown to be a controlling factor in barotropic models at high Reynolds number only with exactly antisymmetric gyres and slip boundary conditions. Almost no intergyre flux occurs when no-slip boundary conditions are used, yet the subtropical gyre is still significantly weaker in multiple-gyre calculations. Sinuous modes of instability present only in multiple gyres are shown here to vastly increase the eddy vorticity transport efficiency. This increase in efficiency reduces the mean circulation necessary for equilibrium. With slip boundary conditions, the intergyre eddy transport is possibly much larger. However, with wind forcing relevant for the ocean—two unequal gyres—a mean flow flux of vorticity rather than an eddy flux between the regions of opposing wind forcing is increasingly important with increasing Reynolds number. A physical rationalization of the differing results is provided by diagnosis of the equilibrium vorticity budget and eddy transport efficiency. Calculations varying 1) boundary conditions, 2) sources and sinks of vorticity, 3) eddy transport efficiency, and 4) the degree of symmetry of the gyres are discussed.


2021 ◽  
pp. 1-21
Author(s):  
Claudia Gariboldi ◽  
Takéo Takahashi

We consider an optimal control problem for the Navier–Stokes system with Navier slip boundary conditions. We denote by α the friction coefficient and we analyze the asymptotic behavior of such a problem as α → ∞. More precisely, we prove that if we take an optimal control for each α, then there exists a sequence of optimal controls converging to an optimal control of the same optimal control problem for the Navier–Stokes system with the Dirichlet boundary condition. We also show the convergence of the corresponding direct and adjoint states.


Author(s):  
Kangrui Zhou ◽  
Yueqiang Shang

AbstractBased on full domain partition, three parallel iterative finite-element algorithms are proposed and analyzed for the Navier–Stokes equations with nonlinear slip boundary conditions. Since the nonlinear slip boundary conditions include the subdifferential property, the variational formulation of these equations is variational inequalities of the second kind. In these parallel algorithms, each subproblem is defined on a global composite mesh that is fine with size h on its subdomain and coarse with size H (H ≫ h) far away from the subdomain, and then we can solve it in parallel with other subproblems by using an existing sequential solver without extensive recoding. All of the subproblems are nonlinear and are independently solved by three kinds of iterative methods. Compared with the corresponding serial iterative finite-element algorithms, the parallel algorithms proposed in this paper can yield an approximate solution with a comparable accuracy and a substantial decrease in computational time. Contributions of this paper are as follows: (1) new parallel algorithms based on full domain partition are proposed for the Navier–Stokes equations with nonlinear slip boundary conditions; (2) nonlinear iterative methods are studied in the parallel algorithms; (3) new theoretical results about the stability, convergence and error estimates of the developed algorithms are obtained; (4) some numerical results are given to illustrate the promise of the developed algorithms.


Sign in / Sign up

Export Citation Format

Share Document