Response of a Semi-Infinite Elastic Solid to an Arbitrary Line Load Along the Axis

1971 ◽  
Vol 38 (4) ◽  
pp. 906-910 ◽  
Author(s):  
G. L. Agrawal ◽  
W. G. Gottenberg

The axisymmetric problem of a line load acting along the axis of a semi-infinite elastic solid is solved using Hankel transforms. In this solution the line load is interpreted as a body force loading and by assuming the line load to be of the form of a Dirac delta function the solution of Mindlin’s problem of a point load within the interior of the half space is obtained. Solutions of this problem presented in the literature have been obtained using semi-inverse techniques whereas the solution given here is obtained in a systematic step-by-step manner.

2016 ◽  
Vol 8 (4) ◽  
pp. 536-555 ◽  
Author(s):  
Xinwei Wang ◽  
Chunhua Jin

AbstractThe differential quadrature method (DQM) has been successfully used in a variety of fields. Similar to the conventional point discrete methods such as the collocation method and finite difference method, however, the DQM has some difficulty in dealing with singular functions like the Dirac-delta function. In this paper, two modifications are introduced to overcome the difficulty encountered in solving differential equations with Dirac-delta functions by using the DQM. The moving point load is work-equivalent to loads applied at all grid points and the governing equation is numerically integrated before it is discretized in terms of the differential quadrature. With these modifications, static behavior and forced vibration of beams under a stationary or a moving point load are successfully analyzed by directly using the DQM. It is demonstrated that the modified DQM can yield very accurate solutions. The compactness and computational efficiency of the DQM are retained in solving the partial differential equations with a time dependent Dirac-delta function.


2020 ◽  
Author(s):  
Matheus Pereira Lobo

I present a finite result for the Dirac delta "function."


2001 ◽  
Vol 694 ◽  
Author(s):  
Fredy R Zypman ◽  
Gabriel Cwilich

AbstractWe obtain the statistics of the intensity, transmission and conductance for scalar electromagnetic waves propagating through a disordered collection of scatterers. Our results show that the probability distribution for these quantities x, follow a universal form, YU(x) = xne−xμ. This family of functions includes the Rayleigh distribution (when α=0, μ=1) and the Dirac delta function (α →+ ∞), which are the expressions for intensity and transmission in the diffusive regime neglecting correlations. Finally, we find simple analytical expressions for the nth moment of the distributions and for to the ratio of the moments of the intensity and transmission, which generalizes the n! result valid in the previous case.


Resonance ◽  
2003 ◽  
Vol 8 (8) ◽  
pp. 48-58 ◽  
Author(s):  
V Balakrishnan

2020 ◽  
Vol 6 (2) ◽  
pp. 158-163
Author(s):  
B. B. Dhanuk ◽  
K. Pudasainee ◽  
H. P. Lamichhane ◽  
R. P. Adhikari

One of revealing and widely used concepts in Physics and mathematics is the Dirac delta function. The Dirac delta function is a distribution on real lines which is zero everywhere except at a single point, where it is infinite. Dirac delta function has vital role in solving inhomogeneous differential equations. In addition, the Dirac delta functions can be used to explore harmonic information’s imbedded in the physical signals, various forms of Dirac delta function and can be constructed from the closure relation of orthonormal basis functions of functional space. Among many special functions, we have chosen the set of eigen functions of the Hamiltonian operator of harmonic oscillator and angular momentum operators for orthonormal basis. The closure relation of orthonormal functions  used to construct the generator of Dirac delta function which is used to expand analytic functions log(x + 2),exp(-x2) and x within the valid region of arguments.


Sign in / Sign up

Export Citation Format

Share Document