elastic solid
Recently Published Documents


TOTAL DOCUMENTS

1324
(FIVE YEARS 121)

H-INDEX

67
(FIVE YEARS 6)

2022 ◽  
Author(s):  
José R. Fernández ◽  
Ramón Quintanilla

AbstractA lot of attention has been paid recently to the study of mixtures and also to the Moore–Gibson–Thompson (MGT) type equations or systems. In fact, the MGT proposition can be used to describe viscoelastic materials. In this paper, we analyze a problem involving a mixture composed by a MGT viscoelastic type material and an elastic solid. To this end, we first derive the system of equations governing the deformations of such material. We give the suitable assumptions to obtain an existence and uniqueness result. The semigroups theory of linear operators is used. The paper concludes by proving the exponential decay of solutions with the help of a characterization of the exponentially stable semigroups of contractions and introducing an extra assumption. The impossibility of location is also shown.


2022 ◽  
Vol 15 (4) ◽  
pp. 115-125
Author(s):  
D. C. Galindo ◽  
M. S. C. Tenório ◽  
A. F. C. Gomes ◽  
J. L. G. Marinho ◽  
B. R. Barboza ◽  
...  

The more complex exploration techniques and operations in deepwater environment are, the higher become the financial costs involved in the process. The rent of an offshore rig, for instance, can cost hundreds of thousands of dollars per day. Therefore, improving deepwater drilling efficiency can lead to significant cost savings. The drilling process of an oil well starts with the initial drilling, which is the operation to accommodate the conductor casing. Among the techniques to set the conductor casing, jetting operations have become popular in submarine environments where the seafloor sediments allow the technique to be used. In these environments, the submarine soil consists of a deformable body displaying a behavior that falls between a linear elastic solid and viscous fluid. Therefore, its behavior is governed by general theory of rheology, and it can be described as highly viscous non-Newtonian fluid. Despite the lack of comprehensive investigations, promising works can be carried out by considering cohesive soil behavior as viscous fluid. Problems of this type can be solved using computational fluid dynamics (CFD), a powerful software which solves complex fluid mechanics equations. Thus, this work numerically evaluates the excavation mechanism in conductor jetting operations in submarine soil during the first 30 seconds of examination, considering soil as viscous fluid of Herschel-Bulkley. Ansys Fluent®, which is a CDF software based on the finite-volume method, was applied to simulate the jetting excavation process. The results indicate that all meshes generated in the development of this work have an excellent quality, and they also show that the greater the mesh refinement is, the higher the accuracy and robustness of the model will be. However, the computational cost to simulate the model increases exponentially with the increase in number of elements, highlighting the importance of properly balancing mesh refinement and computational effort. When analyzing the results, we could also identify the excavation profile made by the bit jet, which presented an almost symmetrical shape.


2021 ◽  
pp. 1-7
Author(s):  
Narottam Maity ◽  
◽  
S P Barik Barik ◽  
P K Chaudhuri ◽  
◽  
...  

The aim of the present article is to analyze the propagation of Rayleigh waves in a rotating fiber-reinforced electrically conducting elastic solid medium under the influence of surface stress, magnetic field and gravity. The magnetic field is applied in such a direction that the problem can be considered as a two dimensional one. The wave velocity equation for Rayleigh waves has been obtained. In the absence of gravity field, surface stress, rotation and fiberreinforcement, the frequency equation is in complete agreement with the corresponding classical results. The effects on various subjects of interest are discussed and shown graphically. Comparisons are made with the corresponding results in absence of surface stress


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2145
Author(s):  
Călin Itu ◽  
Sorin Vlase ◽  
Marin Marin ◽  
Ana Toderiță

The paper studies the vibration response of an elastic solid that has geometric symmetries. These determine special properties of the equations of motion of such a system, presented in the case of a cylindrical body (hollow cylinder). The properties of the eigenvalues and eigenmodes of these systems are theoretically established. A validation of these results is made using the finite element method. The use of the obtained results can lead to an easing of the vibration analysis of such a system and, consequently, to the decrease of the cost related to the design and manufacture of such a structure. The properties presented and demonstrated in the paper can simplify the numerical calculation and experimental verifications of such a structure. Serving these symmetries, the computation cost decrease substantially and will depend not in the number of the identical parts.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2539-2539
Author(s):  
Kyle H Vining ◽  
Anna E. Marneth ◽  
Kwasi Adu-Berchie ◽  
Christina M. Tringides ◽  
Joshua M Grolman ◽  
...  

Abstract Myelofibrosis (MF) is a progressive, myeloid malignancy characterized by deposition of collagen and reticulin fibers in the bone marrow (BM). Previous studies have shown that monocytosis is associated with poor prognosis in MF, highlighting a potential pathogenic role for monocytes in MF. Although many studies have addressed the role of cell-intrinsic and soluble extracellular factors in MF development, it is currently unknown if mechanical properties of fibrotic BM contribute to aberrant differentiation of myeloid cells and of monocytes in particular. We first defined the stiffness and viscoelastic properties of healthy and fibrotic BM. Stiffness is defined as the resistance of a matrix to deformation, while viscoelasticity is the rate of dissipation of an applied stress over time. Independent of stiffness, an applied stress relaxes rapidly in a more viscous, liquid-like matrix, whereas in a more elastic, solid-like material, stress relaxes slowly. We next generated a cohort of fibrotic and non-fibrotic mice by transplanting retrovirally transduced JAK2V617F or empty vector (EV) control hematopoietic stem and progenitor cells (HSPCs) into lethally irradiated recipients. Femurs from these mice were harvested seven months post-transplant, as well as from age- and sex-matched healthy primary mice. Nanoindentation was performed to measure BM stiffness and viscoelasticity. Fibrotic BM showed higher stiffness, as well as trending higher elastic, solid-like properties, compared to BM of control mice. We then aimed to study the effect of matrix stiffness and viscoelasticity on monocytes. Human BM-derived monocytes were encapsulated in stiff, viscous or stiff, elastic hydrogels and cultured in the presence of GM-CSF, IL-4, and PGE2 for 3 days, followed by nanoString and flow cytometry analyses. Cells in elastic gels upregulated gene sets associated with co-stimulatory molecules and cytokine receptor signaling, MHC class II antigen presentation, and regulation of extracellular matrix (ECM), compared to cells in viscous gels of the same stiffness. The fraction of dendritic cells (DCs) was significantly upregulated, as indicated by double-positive CD11c+CD1c+ (40.9% viscous vs 69.5% elastic of CD11b+HLA-DR+ cells) and CD80+ cells (20.9% viscous vs 62.7% elastic of CD11b+HLA-DR+ cells), and surface expression of HLA-DR (gMFI 2587 viscous vs 6334 elastic). Consistent with these findings, the fraction of pro-fibrotic SLAMF7+ cells (4.2% viscous vs 17.3% elastic) were also significantly higher in elastic gels. Together, these data suggest that stiff, elastic ECM drives pro-inflammatory polarization and differentiation of monocytes into antigen-presenting cells. Next, we examined the role of the cytoskeleton on human monocyte differentiation. Cortical F-actin was significantly upregulated in cells in stiff, elastic gels compared to viscous gels. Cells were exposed to a highly selective small molecular inhibitor of the γ-isoform of PI3K. Treatment with the PI3Ky inhibitor significantly reduced F-actin staining of cells in elastic gels, upregulated immature monocyte markers, reduced surface expression of HLA-DR, and downregulated the cytokines IL6, IL8, CCL4, which have previously been associated with disease progression in myelofibrosis. In line with the above human ex vivo data, BM isolated from fibrotic mice (described above) showed skewing towards Ly6G-Ly6C+ monocytes (a population enriched for inflammatory monocytes) within the CD11b myeloid compartment compared to control transplanted mice or to non-fibrotic mice that were transplanted with endogenously expressing Jak2V617F cells. Additionally, the percentage of conventional DCs (cDCs) was increased in fibrotic Jak2V617F mice compared to control mice. Importantly, 16 day in vivo treatment with the PI3Ky inhibitor significantly reduced the fraction of Ly6G-Ly6C+ monocytes within the CD11b compartment as well as the fraction of cDCs, compared to vehicle-treated Jak2V617F mice. In summary, fibrotic BM is stiffer and more elastic than normal BM. Our studies show that a stiff, elastic BM environment drives monocytes towards a more pro-inflammatory state which can in part be suppressed by PI3K-γ inhibition. Our results have relevance for human MF by demonstrating that a fibrotic BM niche is not just a consequence of chronic inflammation but is also inflammation-promoting. KHV and AEM contributed equally to this work. Disclosures Pozdnyakova: Scopio Labs: Consultancy. Mullally: Janssen, PharmaEssentia, Constellation and Relay Therapeutics: Consultancy. Wucherpfennig: Novartis: Research Funding; Nextechinvest: Membership on an entity's Board of Directors or advisory committees; Immunitas Therapeutics: Current holder of individual stocks in a privately-held company; TScan Therapeutics: Membership on an entity's Board of Directors or advisory committees; TCR2 Therapeutics: Membership on an entity's Board of Directors or advisory committees; SQZ Biotech: Membership on an entity's Board of Directors or advisory committees. Mooney: Novartis: Patents & Royalties: Licensed IP, Research Funding; Sirenex: Patents & Royalties: Licensed IP; Samyang Corp: Membership on an entity's Board of Directors or advisory committees; IVIVA: Membership on an entity's Board of Directors or advisory committees; Attivare: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Revela: Membership on an entity's Board of Directors or advisory committees; Amend Surgical: Patents & Royalties: Licensed IP; Lyell: Current equity holder in publicly-traded company, Patents & Royalties.


Author(s):  
Евгений Валерьевич Мурашкин ◽  
Юрий Николаевич Радаев

В статье обсуждаются вопросы распространения монохроматических волн в гемитропном микрополярном континууме. Сформулированы уравнения динамики гемитропного микрополярного упругого тела в терминах псевдотензоров с 9-ю определяющими псевдоскалярами. Рассмотрены преобразования указанных уравнений в случаях инверсии пространства и зеркального отражения относительно заданной плоскости. Показано наличие инверсных волновых мод (наряду с прямыми) в распространяющейся плоской волне. Получены формулы преобразования прямых волновых мод перемещений и микровращений в инверсные и зеркально отраженные моды. Приводятся соответствующие формулы. The paper deals with the propagation of monochromatic plane waves in a hemitropic micropolar continuum. The dynamics equations of a hemitropic micropolar elastic solid in terms of pseudotensors with 9 constitutive pseudoscalars are derived and discussed. Formulae for the cases of space inversion and mirror reflection relative to a given plane are obtained and considered. The simultaneous existence of the direct, inverse and mirror reflected wave modes in propagating plane waves is established. Formulae for direct wave modes of displacements and microrotations in inverse and mirror modes are given.


Sign in / Sign up

Export Citation Format

Share Document