Variational Methods for Dispersion Relations and Elastic Properties of Composite Materials

1972 ◽  
Vol 39 (2) ◽  
pp. 327-336 ◽  
Author(s):  
W. Kohn ◽  
J. A. Krumhansl ◽  
E. H. Lee

The propagation of harmonic elastic waves through composite media with a periodic structure is analyzed. Methods utilizing the Floquet or Bloch theory common in the study of the quantum mechanics of crystal lattices are applied. Variational principles in the form of integrals over a single cell of the composite are developed, and applied in some simple illustrative cases. This approach covers waves moving in any direction relative to the lattice structure, and applies to structures of the Bravais lattice groups which include, for example, parallel rods in a square or hexagonal pattern, and an arbitrary parallelepiped cell. More than one type of inclusion can be considered, and the elastic properties and density of the inclusion and matrix can vary with position, as long as they are periodic from cell to cell. The Rayleigh-Ritz procedure can be applied to the solution of the variational equations, which provides a means of calculating dispersion relations and elastic properties of specific composite materials. Detailed calculations carried out on layered composites confirm the effectiveness of the method.

1999 ◽  
Vol 66 (4) ◽  
pp. 858-866
Author(s):  
P. Bisegna ◽  
R. Luciano

In this paper the four classical Hashin-Shtrikman variational principles, applied to the homogenization problem for periodic composites with a nonlinear hyperelastic constitutive behavior, are analyzed. It is proved that two of them are indeed minimum principles while the other two are saddle point principles. As a consequence, every approximation of the former ones provide bounds on the effective properties of composite bodies, while approximations of the latter ones may supply inconsistent bounds, as it is shown by two numerical examples. Nevertheless, the approximations of the saddle point principles are expected to provide better estimates than the approximations of the minimum principles.


1996 ◽  
pp. 143-164 ◽  
Author(s):  
M. Kafesaki ◽  
E. N. Economou ◽  
M. M. Sigalas

Sign in / Sign up

Export Citation Format

Share Document