stress state
Recently Published Documents


TOTAL DOCUMENTS

4454
(FIVE YEARS 1102)

H-INDEX

65
(FIVE YEARS 7)

Author(s):  
Pengjian Zou ◽  
Xuming Niu ◽  
Xihui Chen ◽  
Zhigang Sun ◽  
Yan Liu ◽  
...  

2022 ◽  
Vol 1049 ◽  
pp. 248-254
Author(s):  
Ivan Andrianov

The numerical method of stamp topological optimization taking into account fatigue strength is presented in the work. It is proposed to take into account the restrictions on the stress state in accordance with the curve of the dependence of the maximum stresses on the number of loading cycles in the ESO topological optimization method. An approach to the selection of the evolutionary coefficient with a step-by-step increase in the rejection coefficient is proposed when constructing an iterative scheme for the rejection of elements by the method of topological optimization. The calculation of the stamp optimal topology with a decrease in volume due to the removal and redistribution of material was carried out in the study. The new geometric model of the optimal topology stamp is based on the predicted distribution of elements with a minimum stress level. The verification calculation of the stress state of the stamp of optimal topology with an assessment of fatigue strength was carried out in the work. The numerical calculation was carried out using the finite element method in the Ansys software package. The minimized stamp volume decreased by 35% according to the calculation results. The results of the study can be further applied in the development of topological optimization methods and in the design of stamping tools of optimal topology.


2022 ◽  
Vol 1049 ◽  
pp. 85-95
Author(s):  
Violetta Kuznetsova ◽  
Maria Barkova ◽  
Alexandr Zhukov ◽  
Igor Kartsan

We consider the creation of a mathematical model describing the effect of corrosive hydrogen environment on the stress state of a hollow spherical shell made of titanium alloy grade VT1-0, the load is evenly distributed throughout the shell. The solution of the problem in practice was carried out by two-step method of sequential perturbation of parameters using MatLab and Maple programs. To solve the system of solving differential equations the finite difference method was applied. The solution of the diffusion equation of the aggressive hydrogen medium has been considered and the obtained solution has been compared with the results of the classical theory which does not take into account the aggressive effect of the corrosive medium.


2022 ◽  
Vol 327 ◽  
pp. 272-278
Author(s):  
Elisa Fracchia ◽  
Federico Simone Gobber ◽  
Claudio Mus ◽  
Yuji Kobayashi ◽  
Mario Rosso

Nowadays, one of the most crucial focus in the aluminium-foundry sector is the production of high-quality castings. Mainly, High-Pressure Die Casting (HPDC) is broadly adopted, since by this process is possible to realize aluminium castings with thin walls and high specific mechanical properties. On the other hand, this casting process may cause tensile states into the castings, namely residual stresses. Residual stresses may strongly affect the life of the product causing premature failure of the casting. Various methods can assess these tensile states, but the non-destructive X-Ray method is the most commonly adopted. Namely, in this work, the residual stress analysis has been performed through Sinto-Pulstec μ-X360s. Detailed measurements have been done on powertrain components realized in aluminium alloy EN AC 46000 through HPDC processes to understand and prevent dangerous residual stress state into the aluminium castings. Furthermore, a comparison with stresses induced by Rheocasting processes is underway. In fact, it is well known that Semi-Solid metal forming combines the advantages of casting and forging, solving safety and environmental problems and possibly even the residual stress state can be positively affected.


Sign in / Sign up

Export Citation Format

Share Document