A Mixture Theory for Quasi-One-Dimensional Diffusion in Fiber-Reinforced Composites

1978 ◽  
Vol 100 (1) ◽  
pp. 128-133 ◽  
Author(s):  
A. Maewal ◽  
G. A. Gurtman ◽  
G. A. Hegemier

A binary mixture theory is developed for heat transfer in unidirectional fibrous composites with periodic, hexagonal microstructure. The case treated concerns a class of problems for which heat conduction occurs primarily in the fiber direction. Model construction is based upon an asymptotic technique wherein the ratio of transverse-to-longitudinal thermal diffusion times is assumed to be small. The resulting theory contains information on the distribution of temperature and heat flux in individual components. Mixture accuracy is estimated by comparing transient solutions of the mixture equations with finite difference solutions of the Diffusion Equation for an initial boundary value problem. Excellent correlation between “exact” and mixture solutions is observed. The construction procedures utilized herein are immediately applicable to other diffusion problems—in particular, moisture diffusion.

2020 ◽  
pp. 91-95
Author(s):  
G. Suleimenov

In this article, the set of boundary conditions is defined for first and boundary value problems for the second approximation of Boltzmann’s system of one-dimensional nonlinear moment equations and their logic. For the second approximation of Boltzmann’s one-dimensional non-stationary nonlinear moment equations, which satisfies the Maxwell-Auzhan boundary condition, the theorem for the first boundary problem is considered and by proving this theorem, it is proved that there are only solutions to the given problems. It is known that in many problems of gas dynamics there is no need to describe the complete state of the gas by the function of microscopic distribution of molecules. Therefore, it is better to look for an easier way to describe the gas using macroscopic gas – dynamic variables (density, hydrodynamic average velocity, temperature) are determined in this rotations by the moments of the microscopic distribution function of the molecules, the author faced with the problem of analyzing the different moments of the Boltzmann equation. By studying the moment equations, the author obtained some information about the function of the microscopic distribution of molecules and the convergence of the moment method.


2021 ◽  
Vol 234 ◽  
pp. 00095
Author(s):  
Margarita Tokareva ◽  
Alexander Papin

The initial-boundary value problem for the system of one-dimensional isothermal motion of viscous liquid in deformable viscous porous medium is considered. Local theorem of existence and uniqueness of problem is proved in case of compressible liquid. In case of incompressible liquid the theorem of global solvability in time is proved in Holder classes. A feature of the model of fluid filtration in a porous medium considered in this paper is the inclusion of the mobility of the solid skeleton and its poroelastiс properties. The transition from Euler variables to Lagrangian variables is used in the proof of the theorems.


Author(s):  
Alexander A. Papin ◽  
Margarita A. Tokareva ◽  
Rudolf A. Virts

The solvability of the initial-boundary value problem is proved for the system of equations of one-dimensional unsteady fluid motion in a heat-conducting viscous porous medium


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Denys Ya. Khusainov ◽  
Michael Pokojovy

We propose a system of partial differential equations with a single constant delayτ>0describing the behavior of a one-dimensional thermoelastic solid occupying a bounded interval ofR1. For an initial-boundary value problem associated with this system, we prove a well-posedness result in a certain topology under appropriate regularity conditions on the data. Further, we show the solution of our delayed model to converge to the solution of the classical equations of thermoelasticity asτ→0. Finally, we deduce an explicit solution representation for the delay problem.


2012 ◽  
Vol 91 (105) ◽  
pp. 111-123 ◽  
Author(s):  
Bosko Jovanovic ◽  
Lubin Vulkov

We investigate an initial-boundary-value problem for one dimensional parabolic equations in disjoint intervals. Under some natural assumptions on the input data we proved the well-posedness of the problem. Nonnegativity and energy stability of its weak solutions are also studied.


Sign in / Sign up

Export Citation Format

Share Document