On an inverse initial-boundary value problem for a one-dimensional hyperbolic system of differential equations

1997 ◽  
Vol 13 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Xueli Dou ◽  
Benren Zhu
Author(s):  
Ērika Teirumnieka ◽  
Ilmārs Kangro ◽  
Edmunds Teirumnieks ◽  
Harijs Kalis

<p>In this paper we consider averaging methods for solving the 3-D boundary value problem in domain containing 2 layers of the peat block. We consider the metal concentration in the peat blocks. Using experimental data the mathematical model for calculation of concentration of metal in different points in every peat layer is developed. A specific feature of these problems is that it is necessary to solve the 3-D boundary-value problems for elliptic type partial differential equations of second order with piece-wise diffusion coefficients in every direction and peat layers.</p><p>The special parabolic and exponential spline, which interpolation middle integral values of piece-wise smooth function, are considered. With the help of this splines is reduce the problems of mathematical physics in 3-D with piece-wise coefficients to respect one coordinate to problems for system of equations in 2-D. This procedure allows reduce the 3-D problem to a problem of 2-D and 1-D problems and the solution of the approximated problem is obtained analytically.</p><p>The solution of corresponding averaged 2-D initial-boundary value problem is obtained also numerically, using for approach differential equations the discretization in space applying the central differences. The approximation of the 2-D non-stationary problem is based on the implicit finite-difference and alternating direction (ADI) methods. The numerical solution is compared with the analytical solution.</p>


1989 ◽  
Vol 113 (3-4) ◽  
pp. 257-265 ◽  
Author(s):  
Nicolas Charalambakis ◽  
François Murat

SynopsisWe prove the existence of a weak solution for the system of partial differential equations describing the shearing of stratified thermoviscoplastic materials with temperature-dependent non-homogeneous viscosity.


2021 ◽  
Vol 83 (2) ◽  
pp. 151-159
Author(s):  
E.A. Korovaytseva

Results of hyperelastic soft shells nonlinear axisymmetric dynamic deforming problems solution algorithm testing are represented in the work. Equations of motion are given in vector-matrix form. For the nonlinear initial-boundary value problem solution an algorithm which lies in reduction of the system of partial differential equations of motion to the system of ordinary differential equations with the help of lines method is developed. At this finite-difference approximation of partial time derivatives is used. The system of ordinary differential equations obtained as a result of this approximation is solved using parameter differentiation method at each time step. The algorithm testing results are represented for the case of pressure uniformly distributed along the meridian of the shell and linearly increasing in time. Three types of elastic potential characterizing shell material are considered: Neo-hookean, Mooney – Rivlin and Yeoh. Features of numerical realization of the algorithm used are pointed out. These features are connected both with the properties of soft shells deforming equations system and with the features of the algorithm itself. The results are compared with analytical solution of the problem considered. Solution behavior at critical pressure value is investigated. Formulations and conclusions given in analytical studies of the problem are clarified. Applicability of the used algorithm to solution of the problems of soft shells dynamic deforming in the range of displacements several times greater than initial dimensions of the shell and deformations much greater than unity is shown. The numerical solution of the initial boundary value problem of nonstationary dynamic deformation of the soft shell is obtained without assumptions about the limitation of displacements and deformations. The results of the calculations are in good agreement with the results of analytical studies of the test problem.


Sign in / Sign up

Export Citation Format

Share Document