The Dynamics of Second Ring Flutter and Collapse in Modern Diesel Engines

Author(s):  
Chao Cheng ◽  
Harold Schock ◽  
Dan Richardson

Second ring fluttering and radial ring collapse are recognized as having significant influences on engine blowby and oil consumption. As the gas flow is coupled with the piston ring motion, understanding the ring dynamics is important for understanding not only the engine blowby mechanism, but also oil consumption mechanisms and how to control them. Only second ring flutter and collapse that occurs around the top dead center (TDC) firing conditions is examined in this paper based on a modern heavy-duty diesel engine. However, the principles described are equally applicable to all engines. First, the authors describe the fundamental mechanisms of how second ring fluttering and radial ring collapse occur. This is described by examining the forces that are acting on the second ring. Then, two cases are shown. One case shows second ring flutter and the other case shows stable second ring motion. The reasons for these two different cases are explained, including the effect of static twist and the end gaps of the rings. A sensitivity study was performed to evaluate the effect of changing the top and second ring end gaps on ring lift. It was shown how the gaps could affect the second ring flutter and ring collapse. It is concluded that the second ring will be more likely to flutter or collapse if it has a negative static twist, if the second ring end gap is large, and/or if the top ring end gap is small. If the second ring does not flutter, it may still be possible to design the ring pack such that there is not any reverse blowby. However, this must be carefully studied and controlled or the second land pressures will be too high, resulting in reverse blowby and/or top ring lifting.

Author(s):  
Chao Cheng ◽  
Harold Schock ◽  
Dan Richardson

Second ring fluttering and radial ring collapse are recognized as having significant influences on engine blowby and oil consumption. As the gas flow is coupled with the piston ring motion, understanding the ring dynamics is important for understanding not only the engine blowby mechanism, but also oil consumption mechanisms and how to control them. Only second ring flutter and collapse that occurs around the top dead center firing conditions is examined in this paper based on a modern heavy-duty diesel engine. However, the principles described are equally applicable to all engines. First, the authors describe the fundamental mechanisms of how second ring fluttering and radial ring collapse occurs. This is described by examining the forces that are acting on the second ring. Then, two cases are shown. One case shows second ring flutter and the other case shows stable second ring motion. The reasons for these two different cases are explained, including the effect of static twist and the end gaps of the rings. A sensitivity study was performed to evaluate the effect of changing the top and second ring end gaps on ring lift. It was shown how the gaps could affect the second ring flutter and ring collapse. It is concluded that the second ring will be more likely to flutter or collapse if it has a negative static twist, if the second ring end gap is large, and/or if the top ring end gap is small. If the second ring does not flutter, it may still be possible to design the ring pack such that there is not any reverse blowby. However, this must be carefully studied and controlled or the second land pressures will be too high, resulting in reverse blowby and/or top ring lifting.


Author(s):  
Ozgen Akalin ◽  
Selcuk Cobanoglu ◽  
Ahu Toygar ◽  
Ozcan Gul ◽  
Goktan Kurnaz ◽  
...  

In order to achieve fast and accurate oil consumption measurements, a real-time sulfur tracing method was developed employing a quadrupole mass spectrometer to analyze the sulfur dioxide concentration in the exhaust stream. A sampling system was designed to measure the oil consumption of separate cylinder groups sequentially under identical running conditions. The developed method enables the comparison of oil consumption of separate cylinder groups without disturbing the engine’s operation. Using this experimental method, steady-state oil consumption of a turbo-charged heavy-duty diesel engine was measured under various engine operating conditions. The effect of cylinder bore surface texture parameters on total lube oil consumption of the test engine was investigated simultaneously using a cylinder block having dissimilar honing patterns on each cylinder group. The results showed that the lube oil consumption of the engine is significantly affected by the cylinder bore surface roughness. The cylinder sets with high surface roughness demonstrated significantly higher lube oil consumption when the cylinder sets with high and low surface roughness was compared simultaneously.


2021 ◽  
Vol 156 ◽  
pp. 105781
Author(s):  
Louise Gren ◽  
Vilhelm B. Malmborg ◽  
John Falk ◽  
Lassi Markula ◽  
Maja Novakovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document