heavy duty diesel engine
Recently Published Documents


TOTAL DOCUMENTS

852
(FIVE YEARS 149)

H-INDEX

48
(FIVE YEARS 9)

2022 ◽  
Vol 8 ◽  
pp. 749-757
Author(s):  
Yunhua Zhang ◽  
Diming Lou ◽  
Piqiang Tan ◽  
Zhiyuan Hu ◽  
Liang Fang

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 123048
Author(s):  
Yingying Lu ◽  
Chao Fan ◽  
Yize Liu ◽  
Yiqiang Pei

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 342
Author(s):  
Roberto Finesso ◽  
Omar Marello

A new procedure, based on measurement of intake CO2 concentration and ambient humidity was developed and assessed in this study for different diesel engines in order to evaluate the oxygen concentration in the intake manifold. Steady-state and transient datasets were used for this purpose. The method is very fast to implement since it does not require any tuning procedure and it involves just one engine-related input quantity. Moreover, its accuracy is very high since it was found that the absolute error between the measured and predicted intake O2 levels is in the ±0.15% range. The method was applied to verify the performance of a previously developed NOx model under transient operating conditions. This model had previously been adopted by the authors during the IMPERIUM H2020 EU project to set up a model-based controller for a heavy-duty diesel engine. The performance of the NOx model was evaluated considering two cases in which the intake O2 concentration is either derived from engine-control unit sub-models or from the newly developed method. It was found that a significant improvement in NOx model accuracy is obtained in the latter case, and this allowed the previously developed NOx model to be further validated under transient operating conditions.


Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121771
Author(s):  
Yu Jiang ◽  
Yi Tan ◽  
Jiacheng Yang ◽  
Georgios Karavalakis ◽  
Kent C. Johnson ◽  
...  

2021 ◽  
pp. 146808742110527
Author(s):  
Amir Hamzeh Farajollahi ◽  
Reza Firuzi ◽  
Mohsen Rostami ◽  
Farid Bagherpor

In this article, the effects of increasing spray cone angle and turbulence intensity on the performance and emission of heavy-duty diesel engine has been examined in two separate stages using AVL-Fire CFD code. First, the injector and its spray have been simulated with various geometries. In this step, the Eulerian-Eulerian model has been applied for injector simulation and the Eulerian -Lagrangian model has been applied for spray simulation. The numerical results of this step indicate that creating swirly flow inside the nozzle decreasing penetration length while, fuel spray cone angle increasing during the injection process. In the subsequent step, the heavy-duty diesel engine has been simulated with its conventional and different nozzle hole geometries. In this step, the Eulerian-Lagrangian model has been applied to simulate the engine cycle. The numerical results of this step show that the nozzle with spiral rifling like guides has better performance and lower emission compared to other nozzle geometries. In this case, the fuel consumption is decreasing 32% than cylindrical nozzle hole, while the engine power and its torque increasing 63%. In addition, the amount of nitrogen oxide (NOx) and carbon monoxide (CO) for the spiral convergent conical nozzle geometry reducing 15% and 30% respectively than cylindrical nozzle hole while engine has no soot emission problem. Diesel injector and engine CFD results and experimental data have been validated from previous researches.


2021 ◽  
Author(s):  
Alaaeddin Al Sheikh Omar ◽  
F. Motamen Salehi ◽  
U. Farooq ◽  
A. Neville ◽  
A. Morina

Abstract Soot is the main contamination that affects oil performance and increases oil drain intervals in heavyduty engine oil. It is also believed that additive concentration in engine oil can be influenced due to additive depletion over time and additive adsorption on soot particles. To extend oil drain intervals and improve oil performance, filter manufactures explore removing the soot to a certain level and replenishing the consumed additives. Zinc Dialkyl Dithiophosphate (ZDDP) is one of the most favoured anti-wear additives that reacts very rapidly with rubbing surfaces to form tribofilm that reduce wear. In this study, the experimental work aims to investigate the effect of ZDDP replenishment on tribological performance in the existence of soot and after removing soot from heavy-duty used oil. The study reveals that reclaiming the used oil can be achieved by removing the soot to a certain level. The results demonstrate that the reclaimed oil after removing soot is still not as good as the fresh oil. This study proves that additive depletion, additive adsorption on soot and the decomposition of antiwear additive adversely influence the reclaimed oil performance. However, replenishing the consumed additive by adding a small amount of ZDDP helps to improve the reclaimed oil performance compared to a large amount of ZDDP which is required to re-gain the oil performance in the existence of soot.


Energy ◽  
2021 ◽  
pp. 122705
Author(s):  
Tianchu Zhang ◽  
Taosheng Jin ◽  
Jingyu Qi ◽  
Shuangxi Liu ◽  
Jingnan Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document