Solving Differential-Algebraic Equation Systems: Alternative Index-2 and Index-1 Approaches for Constrained Mechanical Systems

Author(s):  
Bernhard Schweizer ◽  
Pu Li

Regarding constrained mechanical systems, we are faced with index-3 differential-algebraic equation (DAE) systems. Direct discretization of the index-3 DAE systems only enforces the position constraints to be fulfilled at the integration-time points, but not the hidden constraints. In addition, order reduction effects are observed in the velocity variables and the Lagrange multipliers. In literature, different numerical techniques have been suggested to reduce the index of the system and to handle the numerical integration of constrained mechanical systems. This paper deals with an alternative concept, called collocated constraints approach. We present index-2 and index-1 formulations in combination with implicit Runge–Kutta methods. Compared with the direct discretization of the index-3 DAE system, the proposed method enforces also the constraints on velocity and—in case of the index-1 formulation—the constraints on acceleration level. The proposed method may very easily be implemented in standard Runge–Kutta solvers. Here, we only discuss mechanical systems. The presented approach can, however, also be applied for solving nonmechanical higher-index DAE systems.

Author(s):  
T. Meyer ◽  
P. Li ◽  
B. Schweizer

Abstract Various methods for solving systems of differential-algebraic equations (DAE systems) are known from literature. Here, an alternative approach is suggested, which is based on a collocated constraints approach (CCA). The basic idea of the method is to introduce intermediate time points. The approach is rather general and may basically be applied for solving arbitrary DAE systems. Here, the approach is discussed for constrained mechanical systems of index-3. Application of the presented formulations for nonmechanical higher index DAE systems is also possible. We discuss index-2 formulations with one intermediate time point and index-1 implementations with two intermediate time points. The presented technique is principally independent of the time discretization method and may be applied in connection with different time integration schemes. Here, implementations are investigated for backward differentiation formula (BDF) and Newmark-type integrator schemes. A direct application of the presented approach yields a system of discretized equations with larger dimensions. The increased dimension of the discretized system of equations may be considered as the main drawback of the presented technique. The main advantage is that the approach may be used in a very straightforward manner for solving rather arbitrary multiphysical DAE systems with arbitrary index. Hence, the method might, for instance, be attractive for general purpose DAE integrators, since the approach is not tailored for special DAE systems (e.g., constrained mechanical systems). Numerical examples will demonstrate the straightforward application of the approach.


Sign in / Sign up

Export Citation Format

Share Document