integration time
Recently Published Documents


TOTAL DOCUMENTS

886
(FIVE YEARS 273)

H-INDEX

38
(FIVE YEARS 6)

2022 ◽  
Vol 163 (2) ◽  
pp. 62
Author(s):  
E. Spalding ◽  
K. M. Morzinski ◽  
P. Hinz ◽  
J. Males ◽  
M. Meyer ◽  
...  

Abstract The Large Binocular Telescope (LBT) has two 8.4 m primary mirrors that produce beams that can be combined coherently in a “Fizeau” interferometric mode. In principle, the Fizeau point-spread function (PSF) enables the probing of structure at a resolution up to three times better than that of the adaptive-optics-corrected PSF of a single 8.4 m telescope. In this work, we examined the nearby star Altair (5.13 pc, type A7V, hundreds of Myr to ≈1.4 Gyr) in the Fizeau mode with the LBT at Brα (4.05 μm) and carried out angular differential imaging to search for companions. This work presents the first filled-aperture LBT Fizeau science data set to benefit from a correcting mirror that provides active phase control. In the analysis of the λ/D angular regime, the sensitivity of the data set is down to ≈0.5 M ⊙ at 1″ for a 1.0 Gyr system. This sensitivity remains limited by the small amount of integration time, which is in turn limited by the instability of the Fizeau PSF. However, in the Fizeau fringe regime we attain sensitivities of Δm ≈ 5 at 0.″2 and put constraints on companions of 1.3 M ⊙ down to an inner angle of ≈0.″15, closer than any previously published direct imaging of Altair. This analysis is a pathfinder for future data sets of this type, and represents some of the first steps to unlocking the potential of the first Extremely Large Telescope. Fizeau observations will be able to reach dimmer targets with upgrades to the instrument, in particular the phase detector.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 556
Author(s):  
Wei Duan ◽  
Fuwu Yan ◽  
Yu Wang ◽  
Hui Zhang ◽  
Liuhao Ma ◽  
...  

A compact, sensitive laser-based absorption sensor for multispecies monitoring of methane (CH4), acetylene (C2H2) and ammonia (NH3) was developed using a compact multipass gas cell. The gas cell is 8.8 cm long and has an effective optical path length of 3.0 m with a sampling volume of 75 mL. The sensor is composed of three fiber-coupled distributed feedback lasers operating near 1512 nm, 1532 nm and 1654 nm, an InGaAs photodetector and a custom-designed software for data acquisition, signal processing and display. The lasers were scanned over the target absorption features at 1 Hz. First-harmonic-normalized wavelength modulation spectroscopy (f = 3 kHz) with the second harmonic detection (WMS-2f/1f) is employed to eliminate the unwanted power fluctuations of the transmitted laser caused by aerosol/particles scattering, absorption and beam-steering. The multispecies sensor has excellent linear responses (R2 > 0.997) within the gas concentration range of 1–1000 ppm and shows a detection limit of 0.32 ppm for CH4, 0.16 ppm for C2H2 and 0.23 ppm for NH3 at 1 s response time. The Allan–Werle deviation analysis verifies the long-term stability of the sensor, indicating a minimal detection limit of 20–34 ppb were achieved after 60–148 s integration time. Flow test of the portable multispecies sensor is also demonstrated in this work.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 378
Author(s):  
Gustaw Mazurek

Digital Audio Broadcast (DAB) transmitters can be successfully used as illumination sources in Passive Coherent Location (PCL). However, extending the integration time in such a configuration leads to the occurrence of periodical artifacts in the bistatic range/Doppler plots, resulting from the time structure of the DAB signal. In this paper, we propose some methods of signal preprocessing (based on symbol removal, substitution by noise, and duplication) that operate on the DAB transmission frame level and improve the received signal’s correlation properties. We also demonstrate that two of these methods allow us to avoid the mentioned artifacts and thus to improve the quality of the range/Doppler plots with detection results. We evaluate the performance of the proposed methods using real DAB signals acquired in an experimental PCL platform. We also provide the analysis of the Signal to Noise Ratio (SNR) during the detection of a moving target which shows that the proposed solution, based on symbol duplication, can offer around 3 dB of gain in SNR. Finally, we carry out the computational complexity analysis showing that the proposed method can be implemented with a minimal cost after some optimizations.


2022 ◽  
Vol 134 (1031) ◽  
pp. 015004
Author(s):  
Yuji Ikeda ◽  
Sohei Kondo ◽  
Shogo Otsubo ◽  
Satoshi Hamano ◽  
Chikako Yasui ◽  
...  

Abstract WINERED is a novel near-infrared (NIR) high-resolution spectrograph (HRS) that pursues the highest possible sensitivity to realize high-precision spectroscopy in the NIR as in the optical wavelength range. WINERED covers 0.9–1.35 μm (z, Y, and J-bands) with three modes (Wide mode and two Hires modes) at the maximum spectral resolutions of R = 28,000 and R = 70,000. For fulfilling the objective, WINERED is designed with an unprecedentedly high instrument throughput (up to 50% at maximum including the quantum efficiency of the array) that is three times or more than other existing optical/NIR HRSs. This is mainly realized by a combination of non-white pupil and no fiber-fed configuration in optical design, the moderate (optimized) wavelength coverage, and the high-throughput gratings. Another prominent feature of WINERED is “warm” instrument despite for infrared (IR) observations. Such non-cryogenic (no cold stop) IR instrument finally became possible with the combination of custom-made thermal-cut filter of 10−8 class, 1.7 μm cutoff HAWAII-2RG array, and a cold baffle reducing the direct thermal radiation to the IR array into the solid angle of f/2. The thermal background is suppressed below 0.1 photons pixel−1 s−1 even in the wide band of 0.9–1.35 μm under the environment of 290 K. WINERED had been installed to the 3.58 m New Technology Telescope at La Silla Observatory, ESO, since 2017. Even with the intermediate size telescope, WINERED was confirmed to provide a limiting magnitude (for SNR = 30 with 8 hr. integration time) of J = 16.4 mag for the Wide mode and J = 15.1 mag for the Hires mode, respectively, under the natural seeing conditions. These sensitivities are comparable to those for the existing NIR-HRSs attached to the 8–10 m class telescopes with AO. WINERED type spectrographs may become a critical not only for the currently on-going extremely large telescopes to reduce the developing cost and time but also for smaller telescopes to extend their lives with long programs.


2021 ◽  
Vol 14 (1) ◽  
pp. 35
Author(s):  
Yang Nan ◽  
Shirong Ye ◽  
Jingnan Liu ◽  
Bofeng Guo ◽  
Shuangcheng Zhang ◽  
...  

In recent years, Global Navigation Satellite System Reflectometry (GNSS-R) technology has made considerable progress with the increasing of GNSS-R satellites in orbit, the improvements of GNSS-R data processing technology, and the expansion of its geophysical applications. Meanwhile, with the modernization and evolution of GNSS systems, more signal sources and signal modulation modes are available. The effective use of the signals at different frequencies or from new GNSS systems can improve the accuracy, reliability, and resolution of the GNSS-R data products. This paper analyses the signal-to-noise ratio (SNR) of the GNSS-R measurements from Galileo and BeiDou-3 (BDS-3) systems, which is one of the important indicators to measure the quality of GNSS-R data. The multi-GNSS (GPS, Galileo and BDS-3) complex waveform products generated from the raw intermediate frequency data from TechDemoSat-1 (TDS-1) satellite and Cyclone Global Navigation Satellite System (CYGNSS) constellation are used for such analyses. The SNR and normalized SNR (NSNR) of the reflected signals from Galileo and BDS-3 satellites are compared to these from GPS. Preliminary results show that the GNSS-R SNRs from Galileo and BDS-3 are ∼1–2 dB lower than the GNSS-R measurements from GPS, which could be due to the power of the transmitted power and the bandwidth of the receiver. In addition, the effect of coherent integration time on GNSS-R SNR is also assessed for different GNSS signals. It is shown that the SNR of the reflected signals can be improved by using longer coherent integration time (∼0.4–0.8 dB with 2 ms coherent integration and ∼0.6–1.2 dB with 4 ms coherent integration). In addition, it is also shown that the SNR can be improved more efficiently (∼0.2–0.4 dB) for reflected BDS-3 and Galileo signals than for GPS. These results can provide useful references for the design of future spaceborne GNSS-R instrument compatible with reflections from multi-GNSS constellations.


2021 ◽  
Vol 163 (1) ◽  
pp. 27
Author(s):  
Jiazheng Li ◽  
Jonathan H. Jiang ◽  
Huanzhou Yang ◽  
Dorian S. Abbot ◽  
Renyu Hu ◽  
...  

Abstract A terrestrial planet’s rotation period is one of the key parameters that determines its climate and habitability. Current methods for detecting the rotation period of exoplanets are not suitable for terrestrial exoplanets. Here we demonstrate that, under certain conditions, the rotation period of an Earth-like exoplanet will be detectable using direct-imaging techniques. We use a global climate model that includes clouds to simulate reflected starlight from an Earth-like exoplanet and explore how different parameters (e.g., orbital geometry, wavelength, time resolution) influence the detectability of the planet’s rotation period. We show that the rotation period of an Earth-like exoplanet is detectable using visible-wavelength channels with time-series monitoring at a signal-to-noise ratio (S/N) >20 with ∼5–15 rotation periods of data, while the rotation period of a planet with full ocean coverage is unlikely to be detectable. To better detect the rotation period, one needs to plan the observation so that each individual integration would yield a S/N >10, while keeping the integration time shorter than 1/6 to 1/4 of the rotation period of the planet. Our results provide important guidance for rotation period detection of Earth-like exoplanets in reflected light using future space telescopes.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7896
Author(s):  
Joan Josep Sirvent-Verdú ◽  
Jorge Francés ◽  
Andrés Márquez ◽  
Cristian Neipp ◽  
Mariela Álvarez ◽  
...  

A numerical formulation based on the precise-integration time-domain (PITD) method for simulating periodic media is extended for overcoming the Courant-Friedrich-Levy (CFL) limit on the time-step size in a finite-difference time-domain (FDTD) simulation. In this new method, the periodic boundary conditions are implemented, permitting the simulation of a wide range of periodic optical media, i.e., gratings, or thin-film filters. Furthermore, the complete tensorial derivation for the permittivity also allows simulating anisotropic periodic media. Numerical results demonstrate that PITD is reliable and even considering anisotropic media can be competitive compared to traditional FDTD solutions. Furthermore, the maximum allowable time-step size has been demonstrated to be much larger than that of the CFL limit of the FDTD method, being a valuable tool in cases in which the steady-state requires a large number of time-steps.


2021 ◽  
Author(s):  
Tobias Böck ◽  
Bernhard Pospichal ◽  
Ulrich Löhnert

<p>The atmospheric boundary layer (ABL) is the most important under-sampled part of the atmosphere. ABL monitoring is crucial for short-range forecasting of severe weather within highly resolving numerical weather predictions (NWP). Top-priority atmospheric variables for NWP applications like temperature (T) and humidity (H) profiles are currently not adequately measured. Ground-based microwave radiometers (MWRs) like HATPRO (Humidity And Temperature PROfiler) are particularly well suited to obtain such T-profiles in the ABL as well as coarse resolution H-profiles. It has been shown by previous studies that the assimilation of MWR observations is beneficial for NWP models, however MWR data are not yet routinely assimilated into operational NWP. The HATPRO measures in zenith and other angles throughout the troposphere over an area with ~10 km radius and has a temporal resolution on the order of seconds. Measured brightness temperatures (TB) are used to retrieve the T- and H-profiles. Path integrated values IWV (Integrated Water Vapor) and LWP (Liquid Water Path) are quite reliable with excellent uncertainties up to 0.5 kg/m<sup>2</sup> and 20 g/m<sup>2</sup>, respectively.</p> <p>Driven by the E-PROFILE program, a business case proposal was recently accepted by EUMETNET to continuously provide MWR data to the European meteorological services. Also, the European Research Infrastructure for the observation of Aerosol, Clouds, and Trace gases (ACTRIS) and the European COST action PROBE (PROfiling the atmospheric Boundary layer at European scale) currently focus on establishing continent-wide quality and observation standards for MWR networks for research as well as for NWP applications. The German Weather Service (DWD) also investigates the potential of HATPRO networks for improving short-term weather forecasts over Germany.</p> <p>For all this it is important to obtain an overview of what HATPROs are capable of in regard to their measurement uncertainty. This was done by conducting coordinated experiments at JOYCE (Jülich Observatory for Cloud Evolution) and the FESSTVaL (Field Experiment on Submesoscale Spatio-Temporal Variability at Lindenberg) campaign in 2021 within a prototype MWR network. The goal is to develop a standard procedure for error characterization that can be applied to any HATPRO network instrument (guidance for operators).</p> <p>Important error components are absolute calibration errors (biases), drifts (instrument stability, leaps between calibrations), radiometric noise and also location specific radio frequency interferences (RFI). For the absolute calibration with liquid nitrogen, the repeatability, the integration time and the time between calibrations are essential. Differences between consecutive calibrations are analysed, the right duration of a calibration and the right amount of time between calibrations are proposed, referring to the magnitude of the observed drifts. For the determination of noise levels for each channel, covariance matrices (correlated noise) of measured brightness temperatures on the cold- and hotload references are presented. RFI are detectable via clear-sky azimuth- and/or elevation scans.</p>


2021 ◽  
pp. 1-11
Author(s):  
Zhifeng Han ◽  
Zheng Fang

Abstract In traditional satellite navigation receivers, the parameters of tracking loop such as loop bandwidth and integration time are usually set in the design of the receivers according to different scenarios. The signal tracking performance is limited in traditional receivers. In addition, when the tracking ability of weak signals is improved by extending the integration time, negative effect of residual frequency error becomes more and more serious with extension of the integration time. To solve these problems, this paper presents out research on receiver tracking algorithms and proposes an optimised tracking algorithm with inertial information. The receiver loop filter is designed based on Kalman filter, reducing the phase jitter caused by thermal noise in the weak signal environment and improving the signal tracking sensitivity. To confirm the feasibility of the proposed algorithm, simulation tests are conducted.


Sign in / Sign up

Export Citation Format

Share Document