Multistability and Stochastic Phenomena in the Distributed Brusselator Model

Author(s):  
Alexander Kolinichenko ◽  
Lev Ryashko

Abstract An influence of random disturbances on the pattern formation in reaction–diffusion systems is studied. As a basic model, we consider the distributed Brusselator with one spatial variable. A coexistence of the stationary nonhomogeneous spatial structures in the zone of Turing instability is demonstrated. A numerical parametric analysis of shapes, sizes of deterministic pattern–attractors, and their bifurcations is presented. Investigating the corporate influence of the multistability and stochasticity, we study phenomena of noise-induced transformation and generation of patterns.

2020 ◽  
Vol 55 ◽  
pp. 155-163
Author(s):  
A.P. Kolinichenko ◽  
L.B. Ryashko

In this paper, a distributed stochastic Brusselator model with diffusion is studied. We show that a variety of stable spatially heterogeneous patterns is generated in the Turing instability zone. The effect of random noise on the stochastic dynamics near these patterns is analysed by direct numerical simulation. Noise-induced transitions between coexisting patterns are studied. A stochastic sensitivity of the pattern is quantified as the mean-square deviation from the initial unforced pattern. We show that the stochastic sensitivity is spatially non-homogeneous and significantly differs for coexisting patterns. A dependence of the stochastic sensitivity on the variation of diffusion coefficients and intensity of noise is discussed.


Author(s):  
Alan Turing

It is suggested that a system of chemical substances, called morphogens, reacting together and diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. Such a system, although it may originally be quite homogenous, may later develop a pattern or structure due to an instability of the homogeneous equilibrium, which is triggered off by random disturbances. Such reaction-diffusion systems are considered in some detail in the case of an isolated ring of cells, a mathematically convenient, though biologically unusual system. The investigation is chiefly concerned with the onset of instability. It is found that there are six essentially different forms which this may take. In the most interesting form stationary waves appear on the ring. It is suggested that this might account, for instance, for the tentacle patterns on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also considered. Such a system appears to account for gastrulation. Another reaction system in two dimensions gives rise to patterns reminiscent of dappling. It is also suggested that stationary waves in two dimensions could account for the phenomena of phyllotaxis. The purpose of this paper is to discuss a possible mechanism by which the genes of a zygote may determine the anatomical structure of the resulting organism. The theory does not make any new hypotheses; it merely suggests that certain well-known physical laws are sufficient to account for many of the facts. The full understanding of the paper requires a good knowledge of mathematics, some biology, and some elementary chemistry. Since readers cannot be expected to be experts in all of these subjects, a number of elementary facts are explained, which can be found in text-books, but whose omission would make the paper difficult reading. In this section a mathematical model of the growing embryo will be described. This model will be a simplification and an idealization, and consequently a falsification. It is to be hoped that the features retained for discussion are those of greatest importance in the present state of knowledge. The model takes two slightly different forms. In one of them the cell theory is recognized but the cells are idealized into geometrical points.


Author(s):  
Robert A. Van Gorder

First proposed by Turing in 1952, the eponymous Turing instability and Turing pattern remain key tools for the modern study of diffusion-driven pattern formation. In spatially homogeneous Turing systems, one or a few linear Turing modes dominate, resulting in organized patterns (peaks in one dimension; spots, stripes, labyrinths in two dimensions) which repeats in space. For a variety of reasons, there has been increasing interest in understanding irregular patterns, with spatial heterogeneity in the underlying reaction–diffusion system identified as one route to obtaining irregular patterns. We study pattern formation from reaction–diffusion systems which involve spatial heterogeneity, by way of both analytical and numerical techniques. We first extend the classical Turing instability analysis to track the evolution of linear Turing modes and the nascent pattern, resulting in a more general instability criterion which can be applied to spatially heterogeneous systems. We also calculate nonlinear mode coefficients, employing these to understand how each spatial mode influences the long-time evolution of a pattern. Unlike for the standard spatially homogeneous Turing systems, spatially heterogeneous systems may involve many Turing modes of different wavelengths interacting simultaneously, with resulting patterns exhibiting a high degree of variation over space. We provide a number of examples of spatial heterogeneity in reaction–diffusion systems, both mathematical (space-varying diffusion parameters and reaction kinetics, mixed boundary conditions, space-varying base states) and physical (curved anisotropic domains, apical growth of space domains, chemicalsimmersed within a flow or a thermal gradient), providing a qualitative understanding of how spatial heterogeneity can be used to modify classical Turing patterns. This article is part of the theme issue ‘Recent progress and open frontiers in Turing’s theory of morphogenesis’.


It is suggested that a system of chemical substances, called morphogens, reacting together and diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. Such a system, although it may originally be quite homogeneous, may later develop a pattern or structure due to an instability of the homogeneous equilibrium, which is triggered off by random disturbances. Such reaction-diffusion systems are considered in some detail in the case of an isolated ring of cells, a mathematically convenient, though biologically unusual system. The investigation is chiefly concerned with the onset of instability. It is found that there are six essentially different forms which this may take. In the most interesting form stationary waves appear on the ring. It is suggested that this might account, for instance, for the tentacle patterns on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also considered. Such a system appears to account for gastrulation. Another reaction system in two dimensions gives rise to patterns reminiscent of dappling. It is also suggested that stationary waves in two dimensions could account for the phenomena of phyllotaxis. The purpose of this paper is to discuss a possible mechanism by which the genes of a zygote may determine the anatomical structure of the resulting organism. The theory does not make any new hypotheses; it merely suggests that certain well-known physical laws are sufficient to account for many of the facts. The full understanding of the paper requires a good knowledge of mathematics, some biology, and some elementary chemistry. Since readers cannot be expected to be experts in all of these subjects, a number of elementary facts are explained, which can be found in text-books, but whose omission would make the paper difficult reading.


Sign in / Sign up

Export Citation Format

Share Document