A Symmetric Positive Definite Inverse Vibration Problem With Underdamped Modes

Author(s):  
Ladislav Starek ◽  
Daniel J. Inman ◽  
Deborah F. Pilkev

Abstract This manuscript considers a symmetric positive definite inverse eigenvalue problem for linear vibrating systems described by a vector differential equation with constant coefficient matrices. The inverse problem of interest here is that of determining real symmetric, positive definite coefficient matrices assumed to represent the mass normalized velocity and position coefficient matrices, given a set of specified eigenvalues and eigenvectors. The approach presented here gives an alternative solution to a symmetric inverse vibration problem presented by Starek and Inman (1992) and extends these results to include the definiteness of the coefficient matrices. The new results give conditions which allow the construction of mass normalized damping and stiffness matrices based on given eigenvalues and eigenvectors for the case that each mode of the system is underdamped. The result provides an algorithm for determining a non-proportional damped system which will have symmetric positive definite coefficient matrices.

1997 ◽  
Vol 64 (3) ◽  
pp. 601-605 ◽  
Author(s):  
L. Starek ◽  
D. J. Inman

This paper considers a symmetric inverse vibration problem for linear vibrating systems described by a vector differential equation with constant coefficient matrices and nonproportional damping. The inverse problem of interest here is that of determining real symmetric, coefficient matrices assumed to represent the mass normalized velocity and position coefficient matrices, given a set of specified complex eigenvalues and eigenvectors. The approach presented here gives an alternative solution to a symmetric inverse vibration problem presented by Starek and Inman (1992) and extends these results to include noncommuting (or commuting) coefficient matrices which preserve eigenvalues, eigenvectors, and definiteness. Furthermore, if the eigenvalues are all complex conjugate pairs (underdamped case) with negative real parts, the inverse procedure described here results in symmetric positive definite coefficient matrices. The new results give conditions which allow the construction of mass normalized damping and stiffness matrices based on given eigenvalues and eigenvectors for the case that each mode of the system is underdamped. The result provides an algorithm for determining a nonproportional (or proportional) damped system which will have symmetric coefficient matrices and the specified spectral and modal data.


1992 ◽  
Vol 114 (4) ◽  
pp. 564-568 ◽  
Author(s):  
L. Starek ◽  
D. J. Inman ◽  
A. Kress

This paper considers the inverse eigenvalue problem for linear vibrating systems described by a vector differential equation with constant coefficient matrices. The inverse problem of interest here is that of determining real symmetric coefficient matrices, assumed to represent the mass, damping, and stiffness matrices, given the natural frequencies and damping ratios of the structure (i.e., the system eigenvalues). The approach presented here allows for repeated eigenvalues, whether simple or not, and for rigid body modes. The method is algorithmic and results in a computer code for determining mass normalized damping, and stiffness matrices for the case that each mode of the system is underdamped.


2004 ◽  
Vol 126 (2) ◽  
pp. 212-219 ◽  
Author(s):  
L. Starek ◽  
D. J. Inman

This paper summarizes the authors’ previous efforts on solving inverse eigenvalue problems for linear vibrating systems described by a vector differential equations with constant coefficient matrices and nonproportional damping. The inverse problem of interest here is that of determining symmetric, real, positive definite coefficient matrices assumed to represent mass normalized velocity and position coefficient matrices, given a set of specified complex eigenvalues and eigenvectors. Two previous solutions to the symmetric inverse eigenvalue problem, presented by Starek and Inman, are reviewed and then extended to the design of underdamped vibrating systems with nonproportional damping.


2013 ◽  
Vol 40 (1) ◽  
pp. 5-15
Author(s):  
Ranislav Bulatovic

In this paper, linear vibrating systems, in which the inertia and stiffness matrices are symmetric positive definite and the damping matrix is symmetric positive semi-definite, are studied. Such a system may possess undamped modes, in which case the system is said to have residual motion. Several formulae for the number of independent undamped modes, associated with purely imaginary eigenvalues of the system, are derived. The main results formulated for symmetric systems are then generalized to asymmetric and symmetrizable systems. Several examples are used to illustrate the validity and application of the present results.


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Dario Richiedei ◽  
Alberto Trevisani ◽  
Gabriele Zanardo

This paper introduces a general and flexible design method for the inverse modal optimization of undamped vibrating systems, i.e., for the computation of mass and stiffness linear modifications ensuring the desired system eigenstructure. The technique is suitable for the design of new systems or the optimization of the existing ones and can handle several design requirements and constraints. Paramount strengths of the method are its capability to modify an arbitrary number of parameters and assigned vibration modes, as well as the possibility of dealing with mass and stiffness matrices with arbitrary topologies. To this purpose, the modification problem is formulated as a constrained inverse eigenvalue problem and then solved within the frame of convex optimization. The effectiveness of the method is assessed by applying it to two different test cases. In particular, the second investigation deals with a meaningful mechanical design application: the optimization of a system recalling an industrial vibratory feeder. The results highlight the generality of the method and its capability to ensure the achievement of the prescribed eigenstructure.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Yongxin Yuan

The inverse eigenvalue problem of constructing symmetric positive semidefinite matrix (written as ) and real-valued skew-symmetric matrix (i.e., ) of order for the quadratic pencil , where , are given analytical mass and stiffness matrices, so that has a prescribed subset of eigenvalues and eigenvectors, is considered. Necessary and sufficient conditions under which this quadratic inverse eigenvalue problem is solvable are specified.


Sign in / Sign up

Export Citation Format

Share Document