complex conjugate
Recently Published Documents


TOTAL DOCUMENTS

366
(FIVE YEARS 102)

H-INDEX

29
(FIVE YEARS 3)

Author(s):  
Weicun Zhang

The completed zeta function $\xi(s)$ is expanded in MacLaurin series (infinite polynomial), which can be further expressed as infinite product (Hadamard product) of quadratic factors by its complex conjugate zeros $\rho_i=\alpha_i +j\beta_i, \bar{\rho}_i=\alpha_i-j\beta_i, 0<\alpha_i<1, \beta_i\neq 0, i\in \mathbb{N}$ are natural numbers from 1 to infinity, $\rho_i$ are in order of increasing $|\rho_i|=\sqrt{\alpha_i^2+\beta_i^2}$, i.e., $|\rho_1|<|\rho_2|\leq|\rho_3|\leq |\rho_4|, \cdots$, together with $\beta_1<\beta_2\leq\beta_3\leq\beta_4, \cdots$. Then, according to the functional equation $\xi(s)=\xi(1-s)$, we have $$\xi(0)\prod_{i\in \mathbb{N}}\Big{(}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}+\frac{(s-\alpha_i)^2}{\alpha_i^2+\beta_i^2}\Big{)} =\xi(0)\prod_{i\in \mathbb{N}}\Big{(}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}+\frac{(1-s-\alpha_i)^2}{\alpha_i^2+\beta_i^2}\Big{)}$$ which, by Lemma 3, is equivalent to $$(s-\alpha_i)^2 = (1-s-\alpha_i)^2, i \in \mathbb{N}, \text{from 1 to infinity.}$$ with only valid solution $\alpha_i= \frac{1}{2}$ (another solution $s=\frac{1}{2}$ is invalid due to obvious contradiction). Thus, a proof of the Riemann Hypothesis is achieved.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Lucía Córdova ◽  
Stefano Negro ◽  
Fidel I. Schaposnik Massolo

Abstract We analyze the Thermodynamic Bethe Ansatz (TBA) for various integrable S-matrices in the context of generalized T$$ \overline{\mathrm{T}} $$ T ¯ deformations. We focus on the sinh-Gordon model and its elliptic deformation in both its fermionic and bosonic realizations. We confirm that the determining factor for a turning point in the TBA, interpreted as a finite Hagedorn temperature, is the difference between the number of bound states and resonances in the theory. Implementing the numerical pseudo-arclength continuation method, we are able to follow the solutions to the TBA equations past the turning point all the way to the ultraviolet regime. We find that for any number k of resonances the pair of complex conjugate solutions below the turning point is such that the effective central charge is minimized. As k → ∞ the UV effective central charge goes to zero as in the elliptic sinh-Gordon model. Finally we uncover a new family of UV complete integrable theories defined by the bosonic counterparts of the S-matrices describing the Φ1,3 integrable deformation of non-unitary minimal models $$ \mathcal{M} $$ M 2,2n+3.


Author(s):  
Weicun Zhang

The completed zeta function $\xi(s)$ is expanded in MacLaurin series (infinite polynomial), which can be further expressed as infinite product (Hadamard product) of quadratic factors by its complex conjugate zeros $\alpha_i\pm j\beta_i, \beta_i\neq 0, i\in \mathbb{N}$ are natural numbers, from $1$ to infinity, $\mathbb{N}$ is the set of natural numbers. Then, according to the functional equation $\xi(s)=\xi(1-s)$, we have $$\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(s-\alpha_i)^2}{\beta_i^2}\Big{)} =\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(1-s-\alpha_i)^2}{\beta_i^2}\Big{)}$$ which, by Lemma 3 and Corollary 1, is equivalent to $$(s-\alpha_i)^2 = (1-s-\alpha_i)^2, i \in \mathbb{N}$$ with solution $\alpha_i= \frac{1}{2}, i\in \mathbb{N}$ (another solution $s=\frac{1}{2}$ is invalid due to obvious contradiction). Thus, a proof of the Riemann Hypothesis is achieved.


Author(s):  
Weicun Zhang

The completed zeta function $\xi(s)$ is expanded in MacLaurin series (infinite polynomial), which can be further expressed as infinite product (Hadamard product) of quadratic factors by its complex conjugate zeros $\alpha_i\pm j\beta_i, \beta_i\neq 0, i\in \mathbb{N}$ ($\mathbb{N}$ is the set of natural numbers, from $1$ to infinity). Then, according to the functional equation $\xi(s)=\xi(1-s)$, we have $$\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(s-\alpha_i)^2}{\beta_i^2}\Big{)} =\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(1-s-\alpha_i)^2}{\beta_i^2}\Big{)}$$ which, by Lemma 3 and Corollary 1, is equivalent to $$(s-\alpha_i)^2 = (1-s-\alpha_i)^2, i \in \mathbb{N}$$ with solution $\alpha_i= \frac{1}{2}, i\in \mathbb{N}$ (another solution $s=\frac{1}{2}$ is invalid due to obvious contradiction). Thus, a proof of the Riemann Hypothesis is achieved.


Author(s):  
Mohammad Walid AlMasri

We extend the study of supersymmetric tridiagonal Hamiltonians to the case of non-Hermitian Hamiltonians with real or complex conjugate eigenvalues. We find the relation between matrix elements of the non-Hermitian Hamiltonian [Formula: see text] and its supersymmetric partner [Formula: see text] in a given basis. Moreover, the orthogonal polynomials in the eigenstate expansion problem attached to [Formula: see text] can be recovered from those polynomials arising from the same problem for [Formula: see text] with the help of kernel polynomials. Besides its generality, the developed formalism in this work is a natural home for using the numerically powerful Gauss quadrature techniques in probing the nature of some physical quantities such as the energy spectrum of [Formula: see text]-symmetric complex potentials. Finally, we solve the shifted [Formula: see text]-symmetric Morse oscillator exactly in the tridiagonal representation.


Author(s):  
Weicun Zhang

The completed zeta function $\xi(s)$ is expanded in MacLaurin series (infinite polynomial), which can be further expressed as infinite product (Hadamard product) by its complex conjugate zeros $\alpha_i\pm j\beta_i, \beta_i\neq 0, i\in \mathbb{N}$. Then, according to the functional equation $\xi(s)=\xi(1-s)$, we have $$\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(s-\alpha_i)^2}{\beta_i^2}\Big{)} =\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(1-s-\alpha_i)^2}{\beta_i^2}\Big{)}$$ which, by Lemma 3 and Corollary 1, is equivalent to $$(s-\alpha_i)^2 = (1-s-\alpha_i)^2, i \in \mathbb{N}$$ with solution $\alpha_i= \frac{1}{2}, i\in \mathbb{N}$. Thus, a proof of the Riemann Hypothesis can be achieved.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 444
Author(s):  
Mohammad Joubat ◽  
Alex Prygarin

We consider known expressions for the eigenvalue of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation in N=4 super Yang-Mills theory as a real valued function of two variables. We define new real valued functions of two complex conjugate variables that have a definite complexity analogous to the weight of the nested harmonic sums. We argue that those functions span a general space of functions for the BFKL eigenvalue at any order of the perturbation theory.


Author(s):  
Weicun Zhang

The completed zeta function $\xi(s)$ is expanded in MacLaurin series (infinite polynomial), which can be further expressed as infinite product (Hadamard product) by its complex conjugate zeros $\alpha_i\pm j\beta_i, i\in \mathbb{N}$. Then, according to the functional equation $\xi(s)=\xi(1-s)$, we have $$\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(s-\alpha_i)^2}{\beta_i^2}\Big{)} =\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(1-s-\alpha_i)^2}{\beta_i^2}\Big{)}$$ which, by Lemma 3 and Corollary 1, is equivalent to $$(s-\alpha_i)^2 = (1-s-\alpha_i)^2, i \in \mathbb{N}$$ with solution $\alpha_i= \frac{1}{2}, i\in \mathbb{N}$. Thus, a proof of the Riemann Hypothesis can be achieved.


2021 ◽  
Author(s):  
Usman Shazad ◽  
Shafa Ullah ◽  
M. Iqbal

Abstract The self-organization of a thermally relativistic magnetized plasma comprising of electrons, positrons and static ions is investigated. The self-organized state is found to be the superposition of three distinct Beltrami fields known as triple Beltrami (TB) state. In general, the eigenvalues associated with the multiscale self-organized vortices may be a pair of complex conjugate and real one. It is shown that all the eigenvalues become real when thermal energy increases or the positron density decreases. The impact of relativistic temperature and positron density on the formation of self-organized structures is investigated. The self-organized field and flow vortices may vary simultaneously on vastly different length scales. The disparate variation of self-organized vortices is important in the context of dynamo theory. The present work is useful to study the formation of multiscale vortices and dynamo mechanisms in multi-species thermally relativistic plasmas.


Sign in / Sign up

Export Citation Format

Share Document