scholarly journals Solving the Kinematics of Planar Mechanisms by Dixon Determinant and a Complex-Plane Formulation

Author(s):  
Charles W. Wampler

Abstract This paper presents a general method for the analysis of any planar mechanism consisting of rigid links connected by revolute and slider joints. The method combines the complex plane formulation of Wampler (1999) with the Dixon determinant procedure of Nielsen and Roth (1999). The result is simple to derive and implement, so in addition to providing numerical solutions, the approach facilitates analytical explorations. The procedure leads to a generalized eigenvalue problem of minimal size. Both input/output problems and the derivation of tracing curve equations are addessed.

2000 ◽  
Vol 123 (3) ◽  
pp. 382-387 ◽  
Author(s):  
Charles W. Wampler

This paper presents a general method for the analysis of any planar mechanism consisting of rigid links connected by revolute joints. The method combines a complex plane formulation [1] with the Dixon determinant procedure of Nielsen and Roth [2]. The result is simple to derive and implement, so in addition to providing numerical solutions, the approach facilitates analytical explorations. The procedure leads to a generalized eigenvalue problem of minimal size. Both input/output problems and the derivation of tracing curve equations are addressed, as is the extension of the method to treat slider joints.


1999 ◽  
Vol 121 (3) ◽  
pp. 387-391 ◽  
Author(s):  
C. W. Wampler

This paper presents a general method for the analysis of planar mechanisms consisting of rigid links connected by rotational and/or translational joints. After describing the links as vectors in the complex plane, a simple recipe is outlined for formulating a set of polynomial equations which determine the locations of the links when the mechanism is assembled. It is then shown how to reduce this system of equations to a generalized eigenvalue problem, or in some cases, a single resultant polynomial. Both input/output problems and tracing-curve equations are treated.


Author(s):  
Charles W. Wampler

Abstract This paper presents a general method for the analysis of planar mechanisms consisting of rigid links connected by rotational and/or translational joints. After describing the links as vectors in the complex plane, a simple recipe is outlined for formulating a set of polynomial equations which determine the locations of the links when the mechanism is assembled. It is then shown how to reduce this system of equations to a standard eigenvalue problem, or if preferred, a single resultant polynomial. Both input/output problems and tracing-curve equations are treated.


2011 ◽  
Vol 434 (11) ◽  
pp. 2269-2284 ◽  
Author(s):  
Tiexiang Li ◽  
Chun-Yueh Chiang ◽  
Eric King-wah Chu ◽  
Wen-Wei Lin

Sign in / Sign up

Export Citation Format

Share Document