jacobi method
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 37)

H-INDEX

17
(FIVE YEARS 3)

Author(s):  
Jimena Mejía-López ◽  
Oscar I. López-Sugahara ◽  
José Piña-Flores ◽  
Francisco J. Sánchez-Sesma ◽  
Zengxi Ge ◽  
...  

ABSTRACT The scattering and diffraction of waves by irregular surface profiles is of interest in seismology and in many other areas. Diverse techniques have been proposed to quantitatively study the problem. Among them, domain approaches such as finite differences, spectral elements and finite elements have been used. Because the reduction of dimensionality boundary formulations is widely used. Recently, the direct boundary-element method has been applied using some series approximations for surface scattering, including the preconditioned splitting series, for the numerical description of rough surface scattering. Extending further and simplifying this approach, we use the indirect boundary-element method. The ensuing Fredholm integral equation of the second kind that arises in IBEM leads to a very efficient iterative scheme based on the classical Jacobi method. A discussion of direct and indirect approaches is presented. Assuming incident SH waves, results are obtained with the various approaches and compared among them for both a canyon and a hill, both of semicircular shape. Besides, an example is presented of a surface profile that produces strong scattering. This was inspired by the diverse problems that arise in the emerging field of metamaterials.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Mohsen Fathi ◽  
Marco Olivares ◽  
J. R. Villanueva

AbstractWe calculate the exact solutions to the equations of motion that govern the light ray trajectories as they travel in a Kerr black hole’s exterior that is considered to be filled with an inhomogeneous and anisotropic plasmic medium. This is approached by characterizing the plasma through conceiving a radial and an angular structure function, which are let to be constant. The description of the motion is carried out by using the Hamilton–Jacobi method, that allows defining two effective potentials, characterizing the evolution of the polar coordinates. The elliptic integrals of motion are then solved analytically, and the evolution of coordinates is expressed in terms of the Mino time. This way, the three-dimensional demonstrations of the light ray trajectories are given respectively.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022110
Author(s):  
Bingbing Chen

Abstract Recent studies show that the tunnelling radiation of vector particles has been studied successfully by WKB approximation and Hamilton-Jacobi method. In view of this, the main purpose of this paper is to study the Proca equation and the vector particles tunnelling radiation in a 4-dimensional black hole. Finally, the results here show that the temperature of the vector particle is the same as that of the Dirac particle.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 695
Author(s):  
Yongchul Jung ◽  
Hohyub Jeon ◽  
Seongjoo Lee ◽  
Yunho Jung

The estimation of signal parameters via rotational invariance techniques (ESPRIT) is an algorithm that uses the shift-invariant properties of the array antenna to estimate the direction-of-arrival (DOA) of signals received in the array antenna. Since the ESPRIT algorithm requires high-complexity operations such as covariance matrix and eigenvalue decomposition, a hardware processor must be implemented such that the DOA is estimated in real time. Additionally, the ESPRIT processor should support a scalable number of antenna configuration for DOA estimation in various applications because the performance of ESPRIT depends on the number of antennas. Therefore, we propose an ESPRIT processor that supports two to eight scalable antenna configuration. In addition, since the proposed ESPRIT processor is based on multiple invariances (MI) algorithm, it can achieve a much better performance than the existing ESPRIT processor. The execution time is reduced by simplifying the Jacobi method, which has the most significant computational complexity for calculating eigenvalue decomposition (EVD) in ESPRIT. Moreover, the ESPRIT processor was designed using hardware description language (HDL), and an FPGA-based verification was performed. The proposed ESPRIT processor was implemented with 10,088 slice registers, 18,207 LUTs, and 80 DSPs, and the slice register, LUT, and DSP were reduced by up to 71.45%, 54.5%, and 68.38%, respectively, compared to the existing structure.


2021 ◽  
Vol 36 (03) ◽  
pp. 2150028
Author(s):  
M. A. Anacleto ◽  
F. A. Brito ◽  
S. S. Cruz ◽  
E. Passos

In this paper we study through tunneling formalism, the effect of noncommutativity to Hawking radiation and the entropy of the noncommutative Schwarzschild black hole. In our model we have considered the noncommutativity implemented via the Lorentzian distribution. We obtain noncommutative corrections to the Hawking temperature using the Hamilton–Jacobi method and the Wentzel–Kramers–Brillouin (WKB) approximation. In addition, we found corrections of the logarithmic and other types due to noncommutativity and quantum corrections from the generalized uncertainty principle (GUP) for the entropy of the Schwarzschild black hole.


2021 ◽  
Vol 2021 ◽  
pp. 1-11 ◽  
Author(s):  
M. A. Anacleto ◽  
F. A. Brito ◽  
B. R. Carvalho ◽  
E. Passos

We investigate the effect of noncommutativity and quantum corrections to the temperature and entropy of a BTZ black hole based on a Lorentzian distribution with the generalized uncertainty principle (GUP). To determine the Hawking radiation in the tunneling formalism, we apply the Hamilton-Jacobi method by using the Wentzel-Kramers-Brillouin (WKB) approach. In the present study, we have obtained logarithmic corrections to entropy due to the effect of noncommutativity and GUP. We also address the issue concerning stability of the noncommutative BTZ black hole by investigating its modified specific heat capacity.


Sign in / Sign up

Export Citation Format

Share Document