Generalized Viscoelastic Material Design With Integro-Differential Equations and Direct Optimal Control

Author(s):  
Lakshmi Gururaja Rao ◽  
James T. Allison

Rheological material properties are examples of function-valued quantities that depend on frequency (linear viscoelasticity), input amplitude (nonlinear material behavior), or both. This dependence complicates the process of utilizing these systems in engineering design. In this article, we present a methodology to model and optimize design targets for such rheological material functions. We show that for linear viscoelastic systems simple engineering design assumptions can be relaxed from a conventional spring-dashpot model to a more general linear viscoelastic relaxation kernel, K(t). While this approach expands the design space and connects system-level performance with optimal material design functions, it entails significant numerical difficulties. Namely, the associated governing equations involve a convolution integral, thus forming a system of integro-differential equations. This complication has two important consequences: 1) the equations representing the dynamic system cannot be written in a standard state space form as the time derivative function depends on the entire past state history, and 2) the dependence on prior time-history increases time derivative function computational expense. Previous studies simplified this process by incorporating parameterizations of K(t) using viscoelastic models such as Maxwell or critical gel models. While these simplifications support efficient solution, they limit the type of viscoelastic materials that can be designed. This article introduces a more general approach that can explore arbitrary K(t) designs using direct optimal control methods. In this study, we analyze a nested direct optimal control approach to optimize linear viscoelastic systems with no restrictions on K(t). The study provides new insights into efficient optimization of systems modeled using integro-differential equations. The case study is based on a passive vibration isolator design problem. The resulting optimal K(t) functions can be viewed as early-stage design targets that are material agnostic and allow for creative material design solutions. These targets may be used for either material-specific selection or as targets for later-stage design of novel materials.

Games ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Alexander Arguchintsev ◽  
Vasilisa Poplevko

This paper deals with an optimal control problem for a linear system of first-order hyperbolic equations with a function on the right-hand side determined from controlled bilinear ordinary differential equations. These ordinary differential equations are linear with respect to state functions with controlled coefficients. Such problems arise in the simulation of some processes of chemical technology and population dynamics. Normally, general optimal control methods are used for these problems because of bilinear ordinary differential equations. In this paper, the problem is reduced to an optimal control problem for a system of ordinary differential equations. The reduction is based on non-classic exact increment formulas for the cost-functional. This treatment allows to use a number of efficient optimal control methods for the problem. An example illustrates the approach.


Author(s):  
Mohammad A. Kazemi

AbstractIn this paper a class of optimal control problems with distributed parameters is considered. The governing equations are nonlinear first order partial differential equations that arise in the study of heterogeneous reactors and control of chemical processes. The main focus of the present paper is the mathematical theory underlying the algorithm. A conditional gradient method is used to devise an algorithm for solving such optimal control problems. A formula for the Fréchet derivative of the objective function is obtained, and its properties are studied. A necessary condition for optimality in terms of the Fréchet derivative is presented, and then it is shown that any accumulation point of the sequence of admissible controls generated by the algorithm satisfies this necessary condition for optimality.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Rui Zhang ◽  
Yinjing Guo ◽  
Xiangrong Wang ◽  
Xueqing Zhang

This paper extends the stochastic stability criteria of two measures to the mean stability and proves the stability criteria for a kind of stochastic Itô’s systems. Moreover, by applying optimal control approaches, the mean stability criteria in terms of two measures are also obtained for the stochastic systems with coefficient’s uncertainty.


Sign in / Sign up

Export Citation Format

Share Document