Three Dimensional Attitude Estimation via the Triad Algorithm and a Time-Varying Complementary Filter

Author(s):  
Yizhou Wang ◽  
Evan Chang-Siu ◽  
Matthew Brown ◽  
Masayoshi Tomizuka ◽  
Mohammed I. Almajed ◽  
...  
2016 ◽  
Vol 16 (18) ◽  
pp. 6997-7007 ◽  
Author(s):  
Jin Wu ◽  
Zebo Zhou ◽  
Jingjun Chen ◽  
Hassen Fourati ◽  
Rui Li

2018 ◽  
Vol 41 (1) ◽  
pp. 235-245 ◽  
Author(s):  
Parag Narkhede ◽  
Alex Noel Joseph Raj ◽  
Vipan Kumar ◽  
Vinod Karar ◽  
Shashi Poddar

Attitude estimation is one of the core fundamentals for navigation of unmanned vehicles and other robotic systems. With the advent of low cost and low accuracy micro-electro-mechanical systems (MEMS) based inertial sensors, these devices are used ubiquitously for all such commercial grade systems that need motion information. However, these sensors suffer from time-varying bias and noise parameters, which need to be compensated during system state estimation. Complementary filtering is one of such techniques that is used here for estimating attitude of a moving vehicle. However, the complementary filter structure is dependent on user fed gain parameters, KP and KI and needs a mechanism by which they can be obtained automatically. In this paper, an attempt has been made towards addressing this issue by applying least square estimation technique on the error obtained between estimated and measured attitude angles. The proposed algorithm simplifies the design of nonlinear complementary filter by computing the filter gains automatically. The experimental investigation has been carried out over several datasets, confirming the advantage of obtaining gain parameters automatically for the complementary filtering structure.


Author(s):  
Qi Wen ◽  
Qi Chen ◽  
Qungui Du ◽  
Yong Yang

Misalignment errors (MEs) in multiple degrees of freedom (multi-DOFs) at the mesh position will lead to a change in the time-varying mesh stiffness (TVMS) and then affect the dynamic behaviour of gear pairs. Therefore, a new, more rapid, three-dimensional analytical model for TVMS calculation for gear pairs with three rotational and three translational MEs is established in this paper, and a new solution method based on potential energy theory is presented. In addition, the correctness of the new model is verified by the finite element method (FEM). Moreover, the effective contact line, uneven distribution of mesh force on the contact line, and mesh position change are taken into account. Finally, the TVMS under different ME conditions is calculated with the new analytical model. The results showed that the different MEs have dissimilar effects on the TVMS, and the relationship between the ME and TVMS is nonlinear. In addition, the region of single-pair and double-pair teeth in contact would also change with ME.


2012 ◽  
Vol 57 (5) ◽  
pp. 1332-1338 ◽  
Author(s):  
H. F. Grip ◽  
T. I. Fossen ◽  
T. A. Johansen ◽  
A. Saberi

Sign in / Sign up

Export Citation Format

Share Document