Settling Control of the Triple-Stage Hard Disk Drives Using Robust Output Feedback Model Predictive Control

Author(s):  
Huy Nguyen ◽  
Omid Bagherieh ◽  
Roberto Horowitz

Track settling control for a hard disk drive with three actuators has been considered. The objective is to settle the read/write head on a specific track by following the minimum jerk trajectory. Robust output feedback model predictive control methodology has been utilized for the control design which can satisfy actuator constraints in the presence of noises and disturbances in the system. The controller is designed based on a low order model of the system and has been applied to a higher order plant in order to consider the model mismatch at high frequencies. Since the settling control generally requires a relatively low frequency control input, simulation result shows that the head can be settled on the desired track with 10 percent of track pitch accuracy while satisfying actuator constraints.

2014 ◽  
Vol 47 (3) ◽  
pp. 7461-7466 ◽  
Author(s):  
M. Farina ◽  
L. Giulioni ◽  
L. Magni ◽  
R. Scattolini

2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Xiaobing Kong ◽  
Xiangjie Liu ◽  
Xiuming Yao

Constituting reliable optimal solution is a key issue for the nonlinear constrained model predictive control. Input-output feedback linearization is a popular method in nonlinear control. By using an input-output feedback linearizing controller, the original linear input constraints will change to nonlinear constraints and sometimes the constraints are state dependent. This paper presents an iterative quadratic program (IQP) routine on the continuous-time system. To guarantee its convergence, another iterative approach is incorporated. The proposed algorithm can reach a feasible solution over the entire prediction horizon. Simulation results on both a numerical example and the continuous stirred tank reactors (CSTR) demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document