nonlinear constraint
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 17)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Vol 13 (1) ◽  
pp. 1-13
Author(s):  
Qiaoling Meng ◽  
Mingpeng Jiang ◽  
Zongqi Jiao ◽  
Hongliu Yu

Abstract. Posture transformation is an essential function for multi-posture wheelchairs. To improve the natural motion in posture transformation that is a popular problem in the design of multi-posture wheelchairs because the current wheelchair's posture transformation mechanism cannot remain consistent between the rotation center of the wheelchair and the rotation center of the human body joints. This paper proposes a sitting–standing–lying three-posture bionic transformation mechanism for a smart wheelchair. A human–wheelchair coupling model is described and analyzed according to the biomechanical characteristics of the posture transformation of human beings and their functional requirements. The configuration of the transformation mechanism is chosen by comparing the trails of the wheelchair rotation centers and the corresponding human joint rotation centers. The kinematics of the optimized configuration are discussed in detail to obtain the most bionic motion performance using the multivariable nonlinear constraint optimization algorithm. Finally, the mechanism is designed, and its posture transformation performance is simulated and verified using Adams (Automatic Dynamic Analysis of Mechanical Systems) software.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Qianting Ma ◽  
Tieyong Zeng ◽  
Dexing Kong ◽  
Jianwei Zhang

<p style='text-indent:20px;'>Breast ultrasound segmentation is a challenging task in practice due to speckle noise, low contrast and blurry boundaries. Although numerous methods have been developed to solve this problem, most of them can not produce a satisfying result due to uncertainty of the segmented region without specialized domain knowledge. In this paper, we propose a novel breast ultrasound image segmentation method that incorporates weighted area constraints using level set representations. Specifically, we first use speckle reducing anisotropic diffusion filter to suppress speckle noise, and apply the Grabcut on them to provide an initial segmentation result. In order to refine the resulting image mask, we propose a weighted area constraints-based level set formulation (WACLSF) to extract a more accurate tumor boundary. The major contribution of this paper is the introduction of a simple nonlinear constraint for the regularization of probability scores from a classifier, which can speed up the motion of zero level set to move to a desired boundary. Comparisons with other state-of-the-art methods, such as FCN-AlexNet and U-Net, show the advantages of our proposed WACLSF-based strategy in terms of visual view and accuracy.</p>


Author(s):  
Zhenhang Wu ◽  
Manuel Paredes ◽  
Sébastien Seguy

AbstractThis study proposes the realization of a device with a pure cubic stiffness mechanism to suppress a wide range of vibrations, which is known as the Nonlinear Energy Sink. Deciding how to construct a light, reliable NES device is always a challenge. According to our design, the device can counterbalance the undesirable linear stiffness that emerges from the intrinsic property of a variable pitch spring. Our goal is to reduce the mass of the spring while keeping the same cubic stiffness. Through the multifaceted analysis of the nonlinear constraint, we try to explore the full potential of NES device to reduce its mass. Meanwhile, a global search method, Multi Start, is applied by repeatedly running a local solver. Finally, a new design with different variable pitch distribution is proposed.


Robotics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 74
Author(s):  
Kai Zhang ◽  
Ruizhen Gao ◽  
Jingjun Zhang

This paper presents an obstacle-avoidance trajectory tracking method based on a nonlinear model prediction, with a dynamic environment considered in the trajectory tracking of nonholonomic mobile robots for obstacle avoidance. In this method, collision avoidance is embedded into the trajectory tracking control problem as a nonlinear constraint of the position state, which changes with time to solve the obstacle-avoidance problem in dynamic environments. The CasADi toolkit was used in MATLAB to generate a real-time, efficient C++ code with inequality constraints to avoid collisions. Trajectory tracking and obstacle avoidance in dynamic and static environments are trialed using MATLAB and CasADi simulations, and the effectiveness of the proposed control algorithm is verified.


2020 ◽  
Vol 10 (18) ◽  
pp. 6520
Author(s):  
Jian Huang ◽  
Chaoyang Li ◽  
Bingkui Chen

The crankshaft bearing is the key component of a rotate vector (RV) reducer. However, owing to the harsh working load and restricted available space, the bearing often suffers from fatigue failure. Therefore, this study proposes a novel optimization method for RV reducer crankshaft bearings. A nonlinear constraint optimization model for the design of the bearing considering the crowned roller profile is formulated and is solved by using a crow search algorithm. The goal of the optimization is to maximize the fatigue life of the bearing. The design variables corresponding to the bearing geometry and crowned roller profile are considered. The load working conditions of the bearing and structure of the RV reducer are analyzed. Various constraints, including geometry, lubrication, strength of the bearing, and structure of the RV reducer, are established. Through the optimization design, the optimum crowned roller profile suitable for the working load of the bearing is obtained, and the stress concentration between the roller and raceway is eliminated. Taking the crankshaft bearing of RV-20E and RV-110E type reducers as examples, the bearings were optimized by the proposed method. After optimization, the bearing life of the RV-20E type reducer is increased by 196%, and the bearing life of the RV-110E type reducer is increased by 168%.


2020 ◽  
Author(s):  
Kuo Ming Huang ◽  
Ming-Hung Hsu ◽  
Jang-Ping Wang

Abstract The early twenty-first century has witnessed forgeries of antique silver coins (including Japanese coins, Qing Dynasty coins, Yuan-Shikai-era coins, and Republic of China coins). Some forgers wallow in extravagant profits from illegal trading in fake coins with correct weights that combine some silver with cheaper metals. Exceptional forgers can deceive coin collectors by delivering mostly silver pieces of the same weights and sizes as genuine silver coins. Specific gravity is the ratio of masses for equal volumes of different substances; even though numerous forgers understand coin weights and thus deliver fake products with the correct weights, the aforementioned forgery process cannot counterfeit the specific gravity values of silver coins. Hence, the specific gravity values of silver products can be used to distinguish genuine coins from counterfeits. This paper explains a multistep process for distinguishing genuine from counterfeit silver coins. Calculations of specific gravity are combined with a nonlinear constraint method to estimate the ingredients of alleged silver coins. When the ingredients of a coin have been ascertained, whether a coin is genuine or counterfeit can be proven.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Na Zhang ◽  
Feng Chen ◽  
Yadi Zhu ◽  
Hui Peng ◽  
Jianpo Wang ◽  
...  

The Chinese national rail transit design specification decides the size of urban rail transit platforms in China. This suggested method treats passengers as homogeneous individuals when calculating the walking area within a platform. However, the heterogeneity of passenger behavior in a rail hub station has not been considered. It is not reasonable to see passengers as homogeneous individuals. In this study, by observing passenger behavior characteristics at rail hub platforms, two parameters were obtained, walking speed and luggage size. Passengers were then accordingly put into different groups, and dynamic spatial demands for each passenger group were calculated by parameter fitting functions. Based on the theory of spatiotemporal consumption, the nonlinear constraint model was constructed to determine the space-time consumption of each passenger group, and finally the area demands of different types of passengers were obtained for different time and passenger flows. An application was made to Beikezhan Station on Xi’an Metro line 2. The calculation results show the area demands ranges of four passenger groups with distinct characteristics, and their space-time consumption varied. The study can calculate the space demands for all passenger varieties within a rail hub transit platform and provide suggestions for the determination of the ideal walking area size of rail transit platforms.


2019 ◽  
Vol 11 (24) ◽  
pp. 2959
Author(s):  
Xinyuan Miao ◽  
Ye Zhang ◽  
Junping Zhang ◽  
Xinyu Zhou

Aiming at low spectral contrast materials, the Optimized Smoothing for Temperature Emissivity Separation (OSTES) method was developed to improve the Temperature and Emissivity Separation (TES) algorithm based on the linear relationship between brightness temperature and emissivity features, but there was little smoothing improvement for higher spectral contrast materials. In this paper, a new nonlinear-relationship based algorithm is presented, focusing on improving the performance of the OSTES method for materials with middle or high spectral contrast. This novel approach is a two-step procedure. Firstly, by introducing atmospheric impact factor, the nonlinear relationship is mathematically proved using first-order Taylor series approximation. Moreover, it is proven that nonlinear model has stronger universality than linear model. Secondly, a new method named Temperature and Emissivity Separation with Nonlinear Constraint (TESNC) is proposed based on the nonlinear model for smoothing temperature and emissivity retrieval. The key procedure of TESNC is the lowest emissivity smoothing estimation based on nonlinear model and retrieved by minimizing the reconstruction error of the Planck radiance. TESNC was tested on a series of synthetic data with different kinds of natural materials representing several multispectral and hyperspectral infrared sensors. It is shown that, especially for materials with higher spectral contrast, the proposed method is less sensitive to changes in atmospheric conditions and sample temperatures. Furthermore, the standard Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) products in different kind of atmospheric conditions were used for verifying the improvement. TESNC is more accurate and stable with the decrease of emissivity and changes of atmospheric conditions compared with TES, Adjusted Normalized Emissivity Method (ANEM), and OSTES methods.


Sign in / Sign up

Export Citation Format

Share Document