control input
Recently Published Documents


TOTAL DOCUMENTS

1354
(FIVE YEARS 378)

H-INDEX

40
(FIVE YEARS 8)

Author(s):  
Sina Ameli ◽  
Olugbenga Anubi

Abstract This paper solves the problem of regulating the rotor speed tracking error for wind turbines in the full-load region by an effective robust-adaptive control strategy. The developed controller compensates for the uncertainty in the control input effectiveness caused by a pitch actuator fault, unmeasurable wind disturbance, and nonlinearity in the model. Wind turbines have multi-layer structures such that the high-level structure is nonlinearly coupled through an aggregation of the low-level control authorities. Hence, the control design is divided into two stages. First, an ℒ2 controller is designed to attenuate the influence of wind disturbance fluctuations on the rotor speed. Then, in the low-level layer, a controller is designed using a proposed adaptation mechanism to compensate for actuator faults. The theoretical results show that the closed-loop equilibrium point of the regulated rotor speed tracking error dynamics in the high level is finite-gain ℒ2 stable, and the closed-loop error dynamics in the low level is globally asymptotically stable. Simulation results show that the developed controller significantly reduces the root-mean- square of the rotor speed error compared to some well-known works, despite the largely fluctuating wind disturbance, and the time-varying uncertainty in the control input effectiveness.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 179
Author(s):  
Chokri Sendi

This paper investigates the performance of a fuzzy optimal variance control technique for attitude stability and vibration attenuation with regard to a spacecraft made of a rigid platform and multiple flexible appendages that can be retargeted to the line of sight. The proposed technique addresses the problem of actuators’ amplitude and rate constraints. The fuzzy model of the spacecraft is developed based on the Takagi-Sugeno(T-S) fuzzy model with disturbances, and the control input is designed using the Parallel Distributed Compensation technique (PDC). The problem is presented as an optimization problem in the form of Linear Matrix Inequalities (LMIs). The performance and the stability of the proposed controller are investigated through numerical simulation.


2022 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Jiqiang Li ◽  
Guoqing Zhang ◽  
Bo Li

Around the cooperative path-following control for the underactuated surface vessel (USV) and the unmanned aerial vehicle (UAV), a logic virtual ship-logic virtual aircraft (LVS-LVA) guidance principle is developed to generate the reference heading signals for the USV-UAV system by using the “virtual ship” and the “virtual aircraft”, which is critical to establish an effective correlation between the USV and the UAV. Taking the steerable variables (the main engine speed and the rudder angle of the USV, and the rotor angular velocities of the UAV) as the control input, a robust adaptive neural cooperative control algorithm was designed by employing the dynamic surface control (DSC), radial basic function neural networks (RBF-NNs) and the event-triggered technique. In the proposed algorithm, the reference roll angle and pitch angle for the UAV can be calculated from the position control loop by virtue of the nonlinear decouple technique. In addition, the system uncertainties were approximated through the RBF-NNs and the transmission burden from the controller to the actuators was reduced for merits of the event-triggered technique. Thus, the derived control law is superior in terms of the concise form, low transmission burden and robustness. Furthermore, the tracking errors of the USV-UAV cooperative control system can converge to a small compact set through adjusting the designed control parameters appropriately, and it can be also guaranteed that all the signals are the semi-global uniformly ultimately bounded (SGUUB). Finally, the effectiveness of the proposed algorithm has been verified via numerical simulations in the presence of the time-varying disturbances.


2022 ◽  
Vol 9 (1) ◽  
pp. 1-8
Author(s):  
Fardaneh Osati ◽  
Touraj Mir Mahmoudi ◽  
Bahman Paseban Eslam ◽  
Saman Yazdan Seta ◽  
Hassan Monirifar

To study the effect of irrigation levels and foliar application of fertilizers on some agronomic and oil characteristics of castor bean, an experiment was conducted at the East Azarbaijan Agricultural Research and Education Center, Tabriz, Iran in 2017-2019 cropping seasons. The experiment was laid out as a split-plot design based on a completely randomized block design with three replications. In the present study, main cluster length, number of branches, number of capsules per plant, number of seeds per capsule, 100-grain weight biological yield, grain yield, oil percent and oil yield were measured. Irrigation intervals (normal irrigation (irrigation after 60 mm), irrigation after 80 mm and 140 mm of evaporation) was established as main plots and the foliar applications of fertilizers (N, K, S, N + K, and N + S, K + S, N + K + S and control) input as sub-plots. The results showed that, except for the oil percentage, all the examined traits were decreased by water limitation. The highest values of the traits, other than the 100-grain weight, were obtained for foliar application of N + K + S. This treatment improved the grain yield per unit area under normal irrigation and moderate irrigation and severe stresses by 62.76%, 41.46% and 28.98% respectively. Thus, the foliar application of S (2000 ppm) + N (3000 ppm) + K (3000 ppm) fertilizer is the best treatment for mitigating some harmful effects of water deficit on castor bean.


Author(s):  
Andreas Blank ◽  
Engin Karlidag ◽  
Lukas Zikeli ◽  
Maximilian Metzner ◽  
Jörg Franke

AbstractConcurrent with autonomous robots, teleoperation gains importance in industrial applications. This includes human–robot cooperation during complex or harmful operations and remote intervention. A key role in teleoperation is the ability to translate operator inputs to robot movements. Therefore, providing different motion control types is a decisive aspect due to the variety of tasks to be expected. For a wide range of use-cases, a high degree of interoperability to a variety of robot systems is required. In addition, the control input should support up-to-date Human Machine Interfaces. To address the existing challenges, we present a middleware for teleoperation of industrial robots, which is adaptive regarding motion control types. Thereby the middleware relies on an open-source, robot meta-operating system and a standardized communication. Evaluation is performed within defined tasks utilizing different articulated robots, whereby performance and determinacy are quantified. An implementation sample of the method is available on: https://github.com/FAU-FAPS/adaptive_motion_control.


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 33
Author(s):  
Ziyi Liu ◽  
Hadi Jahanshahi ◽  
Christos Volos ◽  
Stelios Bekiros ◽  
Shaobo He ◽  
...  

Over the last years, distributed consensus tracking control has received a lot of attention due to its benefits, such as low operational costs, high resilience, flexible scalability, and so on. However, control methods that do not consider faults in actuators and control agents are impractical in most systems. There is no research in the literature investigating the consensus tracking of supply chain networks subject to disturbances and faults in control input. Motivated by this, the current research studies the fault-tolerant, finite-time, and smooth consensus tracking problems for chaotic multi-agent supply chain networks subject to disturbances, uncertainties, and faults in actuators. The chaotic attractors of a supply chain network are shown, and its corresponding multi-agent system is presented. A new control technique is then proposed, which is suitable for distributed consensus tracking of nonlinear uncertain systems. In the proposed scheme, the effects of faults in control actuators and robustness against unknown time-varying disturbances are taken into account. The proposed technique also uses a finite-time super-twisting algorithm that avoids chattering in the system’s response and control input. Lastly, the multi-agent system is considered in the presence of disturbances and actuator faults, and the proposed scheme’s excellent performance is displayed through numerical simulations.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jérémy Mouchoux ◽  
Miguel A. Bravo-Cabrera ◽  
Strahinja Dosen ◽  
Arndt F. Schilling ◽  
Marko Markovic

Semi-autonomous (SA) control of upper-limb prostheses can improve the performance and decrease the cognitive burden of a user. In this approach, a prosthesis is equipped with additional sensors (e.g., computer vision) that provide contextual information and enable the system to accomplish some tasks automatically. Autonomous control is fused with a volitional input of a user to compute the commands that are sent to the prosthesis. Although several promising prototypes demonstrating the potential of this approach have been presented, methods to integrate the two control streams (i.e., autonomous and volitional) have not been systematically investigated. In the present study, we implemented three shared control modalities (i.e., sequential, simultaneous, and continuous) and compared their performance, as well as the cognitive and physical burdens imposed on the user. In the sequential approach, the volitional input disabled the autonomous control. In the simultaneous approach, the volitional input to a specific degree of freedom (DoF) activated autonomous control of other DoFs, whereas in the continuous approach, autonomous control was always active except for the DoFs controlled by the user. The experiment was conducted in ten able-bodied subjects, and these subjects used an SA prosthesis to perform reach-and-grasp tasks while reacting to audio cues (dual tasking). The results demonstrated that, compared to the manual baseline (volitional control only), all three SA modalities accomplished the task in a shorter time and resulted in less volitional control input. The simultaneous SA modality performed worse than the sequential and continuous SA approaches. When systematic errors were introduced in the autonomous controller to generate a mismatch between the goals of the user and controller, the performance of SA modalities substantially decreased, even below the manual baseline. The sequential SA scheme was the least impacted one in terms of errors. The present study demonstrates that a specific approach for integrating volitional and autonomous control is indeed an important factor that significantly affects the performance and physical and cognitive load, and therefore these should be considered when designing SA prostheses.


Automation ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 266-277
Author(s):  
Romain Delpoux ◽  
Thierry Floquet ◽  
Hebertt Sira-Ramírez

In this paper, an algebraic approach for the finite-time feedback control problem is provided for second-order systems where only the second-order derivative of the controlled variable is measured. In practice, it means that the acceleration is the only variable that can be used for feedback purposes. This problem appears in many mechanical systems such as positioning systems and force-position controllers in robotic systems and aerospace applications. Based on an algebraic approach, an on-line algebraic estimator is developed in order to estimate in finite time the unmeasured position and velocity variables. The obtained expressions depend solely on iterated integrals of the measured acceleration output and of the control input. The approach is shown to be robust to noisy measurements and it has the advantage to provide on-line finite-time (or non-asymptotic) state estimations. Based on these estimations, a quasi-homogeneous second-order sliding mode tracking control law including estimated position error integrals is designed illustrating the possibilities of finite-time acceleration feedback via algebraic state estimation.


Sign in / Sign up

Export Citation Format

Share Document