Kinetics of CO2 Reforming of Methane by Catalytically Activated Metallic Foam Absorber for Solar Receiver-Reactors

Author(s):  
Nobuyuki Gokon ◽  
Yusuke Osawa ◽  
Daisuke Nakazawa ◽  
Tsuyoshi Hatamachi ◽  
Tatsuya Kodama

Ni-Cr-Al alloy foam absorber with high porosity was catalytically activated using a Ru/γ-Al2O3 catalyst, and was subsequently tested with respect to CO2 reforming of methane in a small-scale volumetric receiver-reactor by using a sun simulator. A chemical storage efficiency of about 40% was obtained for a mean light flux of 325 kWm−2. Furthermore, the activity and the stability of the metallic foam absorber were compared with those of a SiC foam absorber activated with the same Ru/γ-Al2O3 catalyst for 50 h of light irradiation, and it was found that the metallic foam absorber has superior catalytic stability in comparison to the SiC form absorber. In addition, unlike ceramic foams such as SiC, metallic foams feature superior plasticity, which prevents the emergence of cracks caused by mechanical or thermal shock. The kinetics of CO2 reforming of methane over metallic foam absorbers were also examined for temperatures of 600–750°C using a quartz tube reactor and an electric furnace. The experiments were performed by varying the methane/CO2 ratios of 0.5–2.3. Moreover, the kinetic data were fitted to four different types of kinetic models, namely the Langmuir-Hinshelwood, Basic, Eley-Rideal, and Stepwise mechanisms. The kinetic model which provided the best prediction of the experimental reforming rates was the Langmuir-Hinshelwood mechanism.

2008 ◽  
Vol 340 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Kee Young Koo ◽  
Hyun-Seog Roh ◽  
Yu Taek Seo ◽  
Dong Joo Seo ◽  
Wang Lai Yoon ◽  
...  

2016 ◽  
Vol 146 (10) ◽  
pp. 2129-2138 ◽  
Author(s):  
Xumei Tao ◽  
Guowei Wang ◽  
Liang Huang ◽  
Xiaoxiao Li ◽  
Qingguo Ye

2021 ◽  
Vol 10 (16) ◽  
pp. e421101623844
Author(s):  
Paulo Wendel Corderceira Costa ◽  
Jornandes Dias da Silva

The hydrodynamic characterization of the solar-driven CO2 reforming of methane through b-SiC open-cell foam in a fluidized bed configuration is performed by reacting Methane (CH4) with carbon dioxide (CO2). The mathematical modelling is important to design and optimize the reforming methods. Usually, the reforming methods's application through b-SiC foam bed improves the heat transfer and mass transfer due to high porosity and surface area of the b-SiC foam. Fluidized Bed Membrane (FBM) Reformers can be substantially studied as a promising equipment to investigate the thermochemical conversion of CH4 using CO2 to produce solar hydrogen. This work has as main objective a theoretical modelling to describe the process variables of the solar-driven CO2 reforming of methane in the FBM reformer. The FBM reformer is filled with b-SiC open-cell foam where the thermochemical conversion is carried out. The model variables describe the specific aims of work and these objectives can be identified from each equation of the developed mathematical model. The present work has been proposed to study two specific aims as (i) The effective thermal conductivity's effect of the solid phase and (ii) molar flows of chemical components. The endothermic reaction temperature's profiles are notably increased as the numeral value of the effective thermal conductivity's effect of the solid phase. is rised. The solar-driven CO2 reforming method is suggested to improve the Production Rate (PR) of H2 regarding the PR of CO.


Sign in / Sign up

Export Citation Format

Share Document