solar receiver
Recently Published Documents


TOTAL DOCUMENTS

591
(FIVE YEARS 149)

H-INDEX

36
(FIVE YEARS 7)

2022 ◽  
Vol 154 ◽  
pp. 111905
Author(s):  
M. Laporte-Azcué ◽  
P.A. González-Gómez ◽  
M.R. Rodríguez-Sánchez ◽  
D. Santana

Author(s):  
E. Cano-Pleite ◽  
M. Fernández-Torrijos ◽  
D. Santana ◽  
A. Acosta-Iborra

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7392
Author(s):  
Ronny Gueguen ◽  
Guillaume Sahuquet ◽  
Samuel Mer ◽  
Adrien Toutant ◽  
Françoise Bataille ◽  
...  

The fluidized particle-in-tube solar receiver concept is promoted as an attractive solution for heating particles at high temperature in the context of the next generation of solar power tower. Similar to most existing central solar receivers, the irradiated part of the system, the absorber, is composed of tubes in which circulate the fluidized particles. In this concept, the bottom tip of the tubes is immersed in a fluidized bed generated in a vessel named the dispenser. A secondary air injection, called aeration, is added at the bottom of the tube to stabilize the flow. Contrary to risers, the particle mass flow rate is controlled by a combination of the overpressure in the dispenser and the aeration air velocity in the tube. This is an originality of the system that justifies a specific study of the fluidization regimes in a wide range of operating parameters. Moreover, due to the high value of the aspect ratio, the particle flow structure varies along the tube. Experiments were conducted with Geldart Group A particles at ambient temperature with a 0.045 m internal diameter and 3 m long tube. Various temporal pressure signal processing methods, applied in the case of classical risers, are applied. Over a short acquisition time, a cross-reference of the results is necessary to identify and characterize the fluidization regimes. Bubbling, slugging, turbulent and fast fluidization regimes are encountered and the two operation modes, without and with particle circulation, are compared.


2021 ◽  
pp. 1-15
Author(s):  
Hamed Abedini ◽  
Nesrin Ozalp

Abstract Carbon particles can be used as catalyst in solar reactors where they serve as radiant absorbent and nucleation sites for the heterogeneous decomposition reaction. Unlike commonly used metal catalysts, carbon catalyst does not have durability problem and high cost. However, in order to achieve sustainable catalytic decomposition of feedstock over carbon catalysts at elevated temperatures, the surface area of the carbon particles must be maintained. A subsequent treatment of deactivated carbon samples with CO2 at about 1000 °C would increase the surface and would recover the original activity as catalyst. In a windowed solar reactor, carbon particles are directly exposed to the high flux irradiation providing efficient radiation heat transfer directly to the reaction site. Therefore, one of the key parameters to achieve higher conversion efficiencies in a solar reactor is the presence and transport of carbon particles. In this paper, a transient one-dimensional model is presented to describe effect of carbon particle feeding on energy transport and temperature profile of a cavity-type solar receiver. The model was developed by dividing the receiver into several control volumes and formulating energy balance equations for gas phase, particles, and cavity walls within each control volume. Monte Carlo ray tracing (MCRT) method was used to determine the solar heat absorbed by particles and cavity walls, as well as the radiative exchange between particles and cavity walls. Model accuracy was verified by experimental work using a solar receiver where carbon particles were injected uniformly. Comparison of simulation results with the experimentally measured temperatures at three different locations on cavity receiver wall showed an average deviation of 3.81%. The model was then used to study the effect of carbon particle size and feeding rate on the heat transfer, temperature profile, and energy absorption of the solar receiver. Based on the simulation results, it was found that injection of carbon particles with a size bigger than 500 µm has no significant influence on heat transfer of the system. However, by reducing the particle size lower than 500 µm, temperature uniformity and energy absorption were enhanced.


Author(s):  
Ayad T. Mustafa ◽  
Mohammed M. Hadi

Solar energy reaching Earth can be used as promising renewable energy to overcome the challenges of steam generation processes. Solar concentrators suffer from fine adjustment of solar radiation concentration and high investment cost. Therefore, multi-configuration receivers named the cylindrical cavity receiver, helical receiver, and the absorber-evaporator-tank have been manufactured from the coiled copper tube and brass plates, respectively. Then, they are tested and compared to improve the performance of steam generators. The performance of the absorber-evaporator-tank receiver has been compared with the cylindrical cavity receiver and helical receiver for a period from 10 am to 12 pm. The present investigation shows that the boiling point of water increasing when the pressure of generated steam increases particularly inside the coiled tube, which affects the dryness fraction of the generated steam. The present results show that the efficiency of the absorber-evaporator-tank is greater than the cylindrical cavity and helical receivers for the tested period. It is found that the thermal efficiency for the absorber-evaporator-tank doubles at noon, which indicates an effective solar receiver for generating steam.


2021 ◽  
Vol 301 ◽  
pp. 117400
Author(s):  
Shen Du ◽  
Ming-Jia Li ◽  
Ya-Ling He ◽  
Sheng Shen

2021 ◽  
Vol 301 ◽  
pp. 117451
Author(s):  
M. Laporte-Azcué ◽  
M.R. Rodríguez-Sánchez ◽  
P.A. González-Gómez ◽  
D. Santana

2021 ◽  
Vol 2116 (1) ◽  
pp. 012118
Author(s):  
E Zanetti ◽  
A Berto ◽  
M Meneghetti ◽  
D Del Col

Abstract In this paper a novel technique for the in-line evaluation of the absorption rate of solar radiation by nanofluids in a volumetric solar receiver is presented. This method allows to experimentally investigate the optical behaviour of a nanofluid when circulating in a volumetric solar receiver under non-concentrated solar irradiance and it is based on the combined use of pyranometers. This technique is used in the present work to study the absorption capability of a Single-Wall-Carbon-NanoHorns (SWCNHs) based nanofluid. From the experiments, it can be seen that after some hours of circulation, the absorption rate of the nanofluid decreases, due to a loss of nanoparticles in the suspension.


2021 ◽  
pp. 100010
Author(s):  
Giacomo Pierucci ◽  
Sahand Hosouli ◽  
Michele Salvestroni ◽  
Matteo Messeri ◽  
Federico Fagioli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document