al alloy
Recently Published Documents


TOTAL DOCUMENTS

5879
(FIVE YEARS 1012)

H-INDEX

81
(FIVE YEARS 13)

2022 ◽  
Vol 892 ◽  
pp. 162072
Author(s):  
Youlin Huang ◽  
Huaixin Nie ◽  
Yanying Liu ◽  
Wei Li ◽  
Junming Luo ◽  
...  
Keyword(s):  

Author(s):  
Greeshma Aarya

Abstract: Response surface methodology is an efficient and powerful tool which is widely applied for casting optimization. In this research aluminum alloy wheel hub casting is done by using BOXBEHNKEN design, three level of each parameter were taken. Solid modeling of casting and gating system is done by CAD. Simulation of Aluminium Alloy (6061 T6) casting were perform in PRO-cast (2009.1) the simulation result indicates that selected parameters significantly affect the quality of casting. ANOVA is employed to examine the relationship between the factors. Input parameter namely flow rate, pouring temperature and runner size were taken to reduce the volume of shrinkage porosity. Experimental Design consist 15 experimental trials and output data obtained from simulation will be optimized through minitab-18. Result indicates that selected independent variables are significantly influence the response. ANOVA gives the optimized value of selected factors which reduces the porosity volume up to 30cm³. Keywords: Sand casting, Shrinkage porosity, Simulation, DOE, Response surface method.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 658
Author(s):  
Štefan Michna ◽  
Anna Knaislová ◽  
Iryna Hren ◽  
Jan Novotný ◽  
Lenka Michnová ◽  
...  

This article is devoted to the characterization of a new Co-W-Al alloy prepared by an aluminothermic reaction. This alloy is used for the subsequent preparation of a special composite nanopowder and for the surface coating of aluminum, magnesium, or iron alloys. Due to the very high temperature (2000 °C–3000 °C) required for the reaction, thermite was added to the mixture. Pulverized coal was also added in order to obtain the appropriate metal carbides (Co, W, Ti), which increase hardness, resistance to abrasion, and the corrosion of the coating and have good high temperature properties. The phase composition of the alloy prepared by the aluminothermic reaction showed mainly cobalt, tungsten, and aluminum, as well as small amounts of iron, titanium, and calcium. No carbon was identified using this method. The microstructure of this alloy is characterized by a cobalt matrix with smaller regular and irregular carbide particles doped by aluminum.


2022 ◽  
Vol 8 ◽  
Author(s):  
Hanjie Hu ◽  
Bing Du ◽  
Wenkai Jiang ◽  
Changqi Zheng ◽  
Ning Zhu ◽  
...  

In this study, a type of tube with an open-hole AL alloy tube nested outside the CFRP tube is designed and fabricated, and the energy absorbing characteristics and failure mechanism under quasi-static axial compression are discussed. It is found that the summing tube composed of two single tubes has less energy absorption than the hybrid tube. Numerical simulation and theoretical models are used to evaluate the influence of the hybrid tube in terms of cost and weight, and it is found that under the same energy absorption, the hybrid tube has a weight reduction of 39.2% compared to the open-hole AL tube, which was 25.7% of the cost of the CFRP tube. This hybrid structure has potential as the load-carrying and energy absorption tube.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 544
Author(s):  
Lehlogonolo Rudolf Kanyane ◽  
Abimbola Patricia Idowu Popoola ◽  
Sisa Pityana ◽  
Monnamme Tlotleng

The lives of many people around the world are impaired and shortened mostly by cardiovascular diseases (CVD). Despite the fact that medical interventions and surgical heart transplants may improve the lives of patients suffering from cardiovascular disease, the cost of treatments and securing a perfect donor are aspects that compel patients to consider cheaper and less invasive therapies. The use of synthetic biomaterials such as titanium-based implants are an alternative for cardiac repair and regeneration. In this work, an in situ development of Ti-Al-xNb alloys were synthesized via laser additive manufacturing for biomedical application. The effect of Nb composition on Ti-Al was investigated. The microstructural evolution was characterized using a scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). A potentiodynamic polarization technique was utilized to investigate the corrosion behavior of TiAl-Nb in 3.5% NaCl. The microhardness and corrosion behaviour of the synthesized Ti-Al-Nb alloys were found to be dependent on laser-processing parameters. The microhardness performance of the samples increased with an increase in the Nb feed rate to the Ti-Al alloy system. Maximum microhardness of 699.8 HVN was evident at 0.061 g/min while at 0.041 g/min the microhardness was 515.8 HVN at Nb gas carrier of 1L/min, respectively.


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 34
Author(s):  
Luis Rodríguez-Alonso ◽  
Jesús López-Sánchez ◽  
Aida Serrano ◽  
Oscar Rodríguez de la Fuente ◽  
Juan Carlos Galván ◽  
...  

Physiological human fluid is a natural corrosive environment and can lead to serious corrosion and mechanical damages to light Mg–Al alloys used in prosthetics for biomedical applications. In this work, organic–inorganic hybrid coatings doped with various environmentally friendly and non-toxic corrosion inhibitors have been prepared by the sol-gel process for the corrosion protection of AZ61 magnesium alloys. Effectiveness has been evaluated by pH measurements, optical microscopy, and SEM during a standard corrosion test in a Hanks’ Balanced Salt Solution. The results showed that the addition of an inhibitor to the sol-gel coating can improve significantly the corrosion performance, being an excellent barrier for the L-cysteine-doped hybrid sol-gel films. The incorporation of TiO2 nanoparticles, 2-Aminopyridine and quinine organic molecules slowed down the corrosion rate of the Mg–Al alloy. Graphene oxide seemed to have the same response to corrosion as the hybrid sol-gel coating without inhibitors.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 360
Author(s):  
Ewa Ura-Bińczyk

The effect of aging on the resistance to pitting corrosion of ultrafine-grained 7475 aluminium (Al) alloy processed by hydrostatic extrusion (HE) is studied. Differences in the microstructure were investigated using secondary electron (SEM) and transmission electron microscopy (TEM). Corrosion tests were performed in 0.1 M NaCl, and characterization of corroded surface was performed. The results of this work show that the pitting susceptibility of ultra-fine grained 7475Al is related to the distribution of MgZn2 precipitates. After HE, the formation of An ultrafine-grained microstructure at the grain boundaries of ultrafine grains is observed, while subsequent aging results in the formation of MgZn2 precipitates in the grain interior. Grain refinement increases susceptibility to localized attack, while the subsequent aging improves the overall corrosion resistance and limits the propagation of corrosion attack.


2022 ◽  
Vol 23 (1) ◽  
pp. 349-357
Author(s):  
Abbas Fadhil

Aluminum-based metallic matrix compounds are widely used in industrial and aircraft manufacturing due to their advanced characteristics, such as toughness and high strength resistance to weight ratio, etc. Silicon carbide is an important industrial ceramic and it is the fourth hardest ceramic after diamond, boron nitride, and boron carbide. Owing to its low fracture toughness, it is difficult to machine silicon carbide using traditional machining processes. Electrical discharge machine can machine such materials irrespective of their hardness. Aluminum alloy 6061 and 10% SiC based-metal matrix composite were used as a workpiece that was produced by stir casting. In the experimental investigation, pulse current Pc (10, 20, and 30 A), pulse on (Pon) duration (100, 150, and 200 ?sec), and pulse off (Poff) duration (6, 12, and 24 ?sec) were treated as the input variables. The output responses were surface roughness (SR) and material removal rate (MRR). The best value for surface roughness (Ra) reached (1.032 µm) at Pc (10 A), Pon duration (100 ?sec) and Poff (15 ?sec). Also, the best result for the productivity of the process (MRR) reached (69.49 × 10-3 g/min) at Pc (30 A) Pon, (200 ?sec) and (6 ?sec) Poff. Therefore, the experimental outcomes were optimized for surface roughnes and material removal rate by adding 10% SiC to aluminum alloy 6061. ABSTRAK: Sebatian matrik logam berasaskan aluminium telah digunakan secara meluas dalam industri pembuatan dan pesawat kerana ciri-cirinya yang canggih, seperti ketahanan dan daya rintangan yang tinggi kepada nisbah berat, dan lain-lain. Silikon karbida adalah seramik industri yang penting dan ia merupakan seramik keempat terkuat setelah berlian, boron nitrida dan boron karbida. Disebabkan ketahanan frakturnya yang rendah, adalah sukar bagi menghasilkan mesin silikon karbida menggunakan proses pemesinan tradisional. Mesin pelepasan elektrik mampu menghasilkan mesin menggunakan bahan tersebut tanpa mengira kekerasan. Aloi aluminium 6061 dan komposit matrik logam berasaskan SiC 10% telah digunakan sebagai bahan kerja yang terhasil melalui tuangan kacauan. Melalui penyelidikan eksperimen, detik arus Pc (10, 20, dan 30 A), detik hadir (Pon) berdurasi (100, 150, dan 200 ?sec), dan detik henti (Poff) berdurasi (6, 12, dan 24 ?sec) dirawat sebagai pemboleh ubah input. Respon pengeluaran adalah kekasaran permukaan (SR) dan kadar penyingkiran bahan (MRR). Nilai terbaik bagi kekasaran permukaan (Ra) telah mencapai (1.032 µm) pada Pc (10 A), berdurasi Pon (100 ?sec) dan Poff (15 ?sec). Tambahan, hasil terbaik bagi proses produktiviti (MRR) mencapai (69.49 × 10-3 g/min) pada Pc (30 A) Pon, (200 ?sec) dan (6 ?sec) Poff. Oleh itu, hasil eksperimen dioptimumkan bagi permukaan kasar dan kadar penyingkiran bahan dengan tambahan 10% SiC ke aloi aluminium 6061.


Sign in / Sign up

Export Citation Format

Share Document