scholarly journals Proposal of Simplified J-Integral Evaluation Method for a Through Wall Crack in SFR Pipe Made of Mod.9Cr-1Mo Steel

Author(s):  
Takashi Wakai ◽  
Hideo Machida ◽  
Manabu Arakawa ◽  
Koichi Kikuchi

A simplified J-integral evaluation method applicable to unstable failure analysis in Leak Before Break (LBB) assessment of Sodium-cooled Fast Reactor (SFR) in Japan was proposed. Mod.9Cr-1Mo steel is supposed to be a candidate material for the coolant systems of SFR in Japan. This steel has relatively high yield strength and poor fracture toughness comparing to those of conventional austenitic stainless steels. In addition, SFR pipe has small thickness and large diameter. Furthermore, in SFR, primary stresses are insignificant and displacement controlled secondary stresses are predominant. Therefore, the load balance in such piping system changes by crack extension and R6 (2-parameter) method (hereinafter “2-parameter method”) [1] using J-integral is applicable to unstable failure analysis for the pipes under such loading conditions. As a J-integral evaluation method for circumferential through-wall crack in a cylinder, EPRI has proposed a fully plastic solution method. However, the geometry of SFR pipe and material characteristics of Mod.9Cr-1Mo steel exceed the applicable range of EPRI’s method. Therefore, a series of elastic, elasto-plastic and plastic finite element analyses (FEA) were performed for a pipe with a circumferential through-wall crack to propose a J-integral evaluation method applicable to such loading conditions. J-integrals obtained from the FEA were resolved into elastic, local plastic and fully plastic components. Each component was expressed as a function of analytical parameter, such as pipe geometries, crack size, material characteristics and so on. As a result, a simplified J-integral evaluation method was proposed. The method enables to conduct 2-parameter method using J-integral without any fracture mechanics knowledge.

Author(s):  
Takashi Wakai ◽  
Hideo Machida ◽  
Shinji Yoshida

This paper describes the efficiency of the deployment of rotational stiffness evolution model in the critical crack size evaluation for Leak Before Break (LBB) assessment of Sodium cooled Fast Reactor (SFR) pipes. The authors have developed a critical crack size evaluation method for the thin-walled large diameter pipe made of modified 9Cr-1Mo steel. In this method, since the SFR pipe is mainly subjected to displacement controlled load caused by thermal expansion, the stress at the crack part is estimated taking stiffness evolution due to crack into account. The stiffness evolution is evaluated by using the rotational spring model. In this study, critical crack sizes for several pipes having some elbows were evaluated and discuss about the effect of the deployment of the stiffness evolution model at the crack part on critical crack size. If there were few elbows in pipe, thermal stress at the crack part was remarkably reduced by considering the stiffness evolution. In contrast, in the case where the compliance of the piping system was small, the critical crack size could be estimated under displacement controlled condition. As a result, the critical crack size increases by employing the model and LBB range may be expected to be enlarged.


Author(s):  
Eiji Shirai ◽  
Tetsuya Zaitsu ◽  
Kazutoyo Ikeda ◽  
Toshiaki Yoshii ◽  
Masami Kondo ◽  
...  

At domestic PWR plants in Japan, one of the major key issues is earthquake-proof safety [1–3]. Recently, a design procedure using energy absorption, not conventional rigid design, was authorized according to revised review guidelines for aseismic design (JEAC4601). Therefore, we focused on the design technique that utilizes energy absorption effects to reduce the seismic responses of the piping system with U-Bolt, by the static and dynamic tests of simplified piping model supported by U-Bolt. The force-displacement characteristics and a fatigue diagram were obtained by the tests.


2012 ◽  
Vol 47 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Octavian Pop ◽  
Frédéric Dubois ◽  
Joseph Absi

Sign in / Sign up

Export Citation Format

Share Document