energy absorption
Recently Published Documents





2022 ◽  
Vol 172 ◽  
pp. 108760
Guangyong Sun ◽  
Dongdong Chen ◽  
Guohua Zhu ◽  
Qing Li

2022 ◽  
Vol 208 ◽  
pp. 114361
Josephine V. Carstensen ◽  
Reza Lotfi ◽  
Wen Chen ◽  
Stefan Szyniszewski ◽  
Stavros Gaitanaros ◽  

2022 ◽  
Vol 319 ◽  
pp. 126140
Hongyuan Zhou ◽  
Xuejian Zhang ◽  
Xiaojuan Wang ◽  
Hong Zhang ◽  
Tianyi Song

10.29007/6w78 ◽  
2022 ◽  
Cong Hoa Vu ◽  
Thi Hieu Thao Le ◽  
Phuoc Khanh Huy Nguyen

Crash-dynamics research has always concentrated significantly in the safety, survivability of passengers in a car crash. To identify the capability of energy absorption of a crash box, a thin-walled structure will be modeled and simulated by ABAQUS software. Investigate the influence of material, cross-sectional, thickness factors on the energy absorption capacity of the tube, using MCDM – Multi-Criteria Decision-Making to get the best option and testing the improvement while filling the tube with Foam material. In this study, beside the cross-sectional, aluminum alloys and steel materials and thickness are factors that influence the energy absorption evaluation criteria, the foam material with difference density are surveyed to compare effectiveness between the foam-filled and hollow crashboxes. The results show that the folds of the foam-filled tube after deformation along the compressive direction will be more continuous and stable. More, the higher foam density, the greater the energy absorption. This prevents the crashbox from deviating from the direction of the force, help directing the collapse of the tube, thereby improving energy absorption without significantly increasing the weight of the structure.

2022 ◽  
pp. 204141962110654
Tan-Trung Bui ◽  
Dhafar Al Galib ◽  
Abdelkrim Bennani ◽  
Ali Limam

The collapse of tubes under axial load is an important subject from the safety point of view, particularly in the design of energy absorbing devices used in many engineering applications. In this study, quasi-static and dynamic experiments were carried out on square thin-walled aluminum extrusions to investigate the effects of circular holes. Cutouts were introduced in the four corners of the square-section tube, not far from the end boundary of the tube, in order both to decrease the first peak load on the load-displacement characteristic and to control the collapse mode. Different aspects, such as the buckling modes and the energy absorption in quasi-static axial crushing tests, as well as dynamic effects and material rheology contributions in dynamic crushing tests, have been examined. For the dynamic tests, the parameters were the impacting mass and its velocity. The results showed a drop in the first peak function of the openings’ radius and the tube’s energy absorption capacity was kept. A comparison between static and dynamic tests results was carried out and the interpretation of the results in terms of deformation mechanism and energy absorption was discussed. Numerical simulations with the finite element code ABAQUS were conducted to confirm the experimental findings. The results of different numerical models, implicit and explicit calculations, that contribute to a basic understanding of the buckling and prediction of the crash behavior of the aluminum components without and with the cutouts are presented.

2022 ◽  
Vol 12 (2) ◽  
pp. 798
Omrane Kadri ◽  
Abdulrahman Alfuraih

Tissue equivalent materials (TEM) are frequently used in research as a means to determine the delivered dose to patients undergoing various therapeutic procedures. They are used in routine quality assurance and quality control procedures in diagnostic and therapeutic physics. However, very few materials that are tissue equivalent have been developed for use in research at the low photon energies involved in diagnosis radiology. The objective of this study is to describe a series of TEMs designed to radiographically imitate human tissue at diagnostic photon energies. TEMs for adipose, cortical bone, fat, lung, and muscle tissues were investigated in terms of energy absorption and exposure buildup factors for photon energy range 15–150 keV and for penetration depths up to 40 mean free path. BUF was computed based on GP-fitting method. Moreover, we also compared some radiological properties, including the total attenuation and the energy-absorption attenuation, the effective atomic number, and the CT number at 30, 100, and 120 kVp. We found that SB3, Glycerol trioleate, and MS15 perfectly mimic cortical bone, fat, and muscle tissues, respectively. Additionally, AP6 and Stracey latex are good TEM for adipose and lung tissues, respectively. The results of this work should be useful in radiation diagnosis and dosimetry applications for the large physician researcher community.

2022 ◽  
Vol 8 ◽  
Hanjie Hu ◽  
Bing Du ◽  
Wenkai Jiang ◽  
Changqi Zheng ◽  
Ning Zhu ◽  

In this study, a type of tube with an open-hole AL alloy tube nested outside the CFRP tube is designed and fabricated, and the energy absorbing characteristics and failure mechanism under quasi-static axial compression are discussed. It is found that the summing tube composed of two single tubes has less energy absorption than the hybrid tube. Numerical simulation and theoretical models are used to evaluate the influence of the hybrid tube in terms of cost and weight, and it is found that under the same energy absorption, the hybrid tube has a weight reduction of 39.2% compared to the open-hole AL tube, which was 25.7% of the cost of the CFRP tube. This hybrid structure has potential as the load-carrying and energy absorption tube.

2022 ◽  
pp. 136943322110509
Liwen Zhang ◽  
Zhujian Xie ◽  
Jing Li ◽  
Junping Zhang ◽  
Qinglun Yu ◽  

A new type of pier anti-collision composite structure composed of honeycomb steel and polyurethane (PU) elastomer was proposed in this study. The impacts of the shape and filling materials of inner core cells on the failure mode, load–displacement cure, bearing capacity, structural stability, and energy absorption were studied by conducting uniaxial compression tests on device segments. Test results showed that the bearing capacity, structural stability, and energy absorption of honeycomb steel structure were significantly improved by PU elastomer filling. Besides, when compared with the square honeycomb structure and the regular hexagon honeycomb structure, the maximum values of average load, total energy absorption (TEA), and specific energy absorption (SEA), which were 69.6 kN, 1986.1 J, and 1300 J/kg, respectively, for the regular triangle honeycomb structure without PU filling, increased to 459.3%, 376.38%, and 212.5%, respectively, for the regular hexagonal core cell structure with PU filling, which was proved to be the most suitable core structure for pier anti-collision device.

2022 ◽  
Vol 12 (1) ◽  
Yimin Song ◽  
He Ren ◽  
Hailiang Xu ◽  
Xu Guo ◽  
Zheng Chen ◽  

AbstractThrough the improvement of supporting structure and the utilization of the interaction between surrounding rock and supporting structure, the synergistic system of energy-absorbing yielding anti-impact supporting structure and surrounding rock is established. The process of energy absorption device, energy-absorbing yielding anti-impact supporting structure and synergistic system under impact is simulated to analyze the properties of them. The following conclusions could be drawn. The deformation and yielding process under compression of energy absorption device is divided into five stages. Compared with the traditional supporting structure, the energy-absorbing yielding anti-impact supporting structure has the reaction force with lower value and smaller fluctuation range before the deformation of the energy absorption device reaches the third ascending section. The synergy between surrounding rock and supporting structure plays an important role in roadway support. Compared with the supporting structure without surrounding rock, the reaction force of the supporting structure in the synergistic system is lower, and a stationary stage is added in the early stage of the reaction force curve.

Sign in / Sign up

Export Citation Format

Share Document