piping system
Recently Published Documents


TOTAL DOCUMENTS

1505
(FIVE YEARS 268)

H-INDEX

21
(FIVE YEARS 5)

Facilities ◽  
2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nima Amani

Purpose This paper aims to report on the findings from a research project, incorporated by Iran’s Ministry of Petroleum, investigating the integration of inspection management with analysis of document information. Design/methodology/approach A combination of group and individual interviews were undertaken with qualitative methods of analysis to develop an integrated process model. The model developed uses integrity management factors, which allows flexibility and the early integration of inspection management systems at a strategic level, although detailed planning is still required through the use of integrated management tools. The model combines information on responsibilities, tasks and policies, of personnel in the inspection management of the piping system with the oil and gas industry. Findings The six inspection activities recognized for the main practical model are, namely, identify pipeline situation; inspect and measure defects; inspection assessment; design inspection; implement inspection activities and measure and report inspection. Originality/value This research presented not only a process but also the framework and techniques to manage and improve management effectiveness and inspection efficiency in pipelines of the oil and gas industry. This study will be useful to researchers maintenance professionals and others concerned with inspection and maintenance management of facilities and equipment in the oil and gas industry.


Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 152
Author(s):  
Raheleh Jafari ◽  
Sina Razvarz ◽  
Cristóbal Vargas-Jarillo ◽  
Alexander Gegov ◽  
Farzad Arabikhan

A pipe is a ubiquitous product in the industries that is used to convey liquids, gases, or solids suspended in a liquid, e.g., a slurry, from one location to another. Both internal and external cracking can result in structural failure of the industrial piping system and possibly decrease the service life of the equipment. The chaos and complexity associated with the uncertain behaviour inherent in pipeline systems lead to difficulty in detection and localisation of leaks in real time. The timely detection of leakage is important in order to reduce the loss rate and serious environmental consequences. The objective of this paper is to propose a new leak detection method based on an autoregressive with exogenous input (ARX) Laguerre fuzzy proportional-integral-derivative (PID) observation system. The objective of this paper is to propose a new leak detection method based on an autoregressive with exogenous input (ARX) Laguerre fuzzy proportional-integral-derivative (PID) observation system. In this work, the ARX–Laguerre model has been used to generate better performance in the presence of uncertainty. According to the results, the proposed technique can detect leaks accurately and effectively.


2021 ◽  
Vol 6 (1 (114)) ◽  
pp. 13-20
Author(s):  
Didik Nurhadiyanto ◽  
Shigeyuki Haruyama ◽  
Mujiyono Mujiyono ◽  
Sutopo Sutopo ◽  
Yunaidi Yunaidi ◽  
...  

The corrugated metal gasket is still in the early stages of development. However, gasket contact flanges with a high surface roughness (more than 3.5 µm) leak and require a lot of force to tighten. A nickel or copper-coated corrugated metal gasket was designed. A water pressure test was used to measure leaks, and the results revealed that nickel or copper-covered gaskets performed better. The effect of high temperature has not been explored in this study, which only reveals high pressure. The goal of this study is to use copper and nickel coatings to improve the performance of corrugated metal gaskets. Copper or nickel infiltrates the pipe flange's rough surface, preventing leaking. The purpose of this study is to investigate the performance of a coated corrugated metal gasket in a boiler system, which has high temperature and pressure. Corrugated metal gaskets were formed using a cold forming process. The gasket material was SUS304, which is copper or nickel-plated through electroplating. The gasket was installed in a series of pipes in the boiler that flows water at high temperature and pressure. The water leak was trickling on white paper that had been placed beneath the gasket. Even small water leaks are detected on white paper. The thermal camera can detect vapor leaks. The results of the studies reveal that the coated corrugated metal gasket's performance was improved, as seen by the reduction in leakage. At the highest pressure of 7 bar and the lowest tightening force of 40 kN, neither gasket leaked. This result is different from standard corrugated metal gaskets, where at the same pressure and temperature, steam and water leaks are observed. Both copper and nickel-plating types can be used to coat corrugated metal gaskets made of SUS304.


JTAM ROTARY ◽  
2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ilham Arif Firmansyah ◽  
Aqli Mursadin

Supply of compressed air has an important role in continuity of operation power plant, failures that occur in operation of engine in this unit can affect all plant operations that can result in decreased production levels. To determine the magnitude of loss of pressure or energy loss lost in pressurized air piping system at plant located in PT. Indocement Tunggal Prakarsa, Tbk. Tarjun Plant-12. Evaluation of pressure reduction losses in the air system is focused on losses caused by system leakage and pressure drops in the distribution lines caused by several factors including friction in straight pipes, bends, fittings, reducers and existing components, and knowing the loss of costs due to compressor pressure drop. The pressure drop in the pipe is very dependent on pipe diameter, besides distance and supporting components on piping system also affect the pressure drop. Based on calculation, there was a decrease in pressure of 1603660,895 Pa, from pressure drop caused by friction of straight pipe and connection and actual condition of pipe surface which was likely to have been corroded, making surface rough. system decline that occurred in the compressor resulted in a loss of operational costs of 5,760,451 rupiah / week.


2021 ◽  
Vol 12 (8) ◽  
pp. 2117-2139
Author(s):  
Florian Ion Tiberiu Petrescu ◽  
Relly Victoria Virgil Petrescu

In general, life is only possible in the presence of oxygen in a form that can be easily absorbed by the body. In the case of humans, the lungs have as their main task the provision of the oxygen necessary for the body to carry out daily activities. The lung is a paired organ located in the chest cavity, a fibro-elastic organ capable of altering your volume during breathing (inspire and expire). The weight of a lung varies between 800 and 1,000 grams, of which more than 50% is blood. The air reaches the lungs through a pipeline system consisting of Nazo-pharynx, larynx, trachea, bronchi, and bronchiole. The role of the piping system is to heat and dampen the air or to capture and remove foreign inhaled particles. The channel system decreases in diameter after each branch - from the trachea and the large bronchi to the bronchiole with a diameter of less than one millimeter. The lung consists of over 30 different cell types. Trachea and large bronchi are taped by a mucous layer containing multiple cell types: ciliary cells - provides mucus movement, caliciform cells - secretes mucus, basal cells - plays a role in regeneration and neuro-ectodermic cells - ensures the secretory function of the lungs. In the chorion (the deep layer beneath the mucosa) there are cells involved in the defense processes - lymphocytes, mast cells, eosinophils or neutrophils.


Author(s):  
Stefan Hay ◽  
Ingo Weidlich ◽  
Ingo Wolf ◽  
Felipe A. Villalobos

The development of a monitored district heating piping system has allowed the study of axial displacement variations in a buried pipeline. This piping system includes four instrumented sections of piping within an in use district heating network. There are also different conditions under testing such as thickness of expansion cushions, temperature ranges and bedding soil types. The pipe axial displacements were on-line monitored by means of extensometers in six positions along each of the four sections of the pipeline. Measured maximum pipe axial displacements were 24 and 25 mm in the corners of the 41 m long monitored pipelines, while estimated values were 23 mm using current recommendation procedures and 27 mm using calibrated commercial computer programs. One temperature unloading-reloading caused displacements to not return to the same values as before, but around 3 mm smaller. Therefore, several unloading-reloading temperature cycles may affect the pipe deformation behaviour in the short and long term.


2021 ◽  
Vol 412 ◽  
pp. 197-206
Author(s):  
Lenin Ramos-Cantú ◽  
Luis Héctor Hernández-Gómez ◽  
Rafael García-Illescas ◽  
Tanya Nerina Arreola-Valles ◽  
José Javier Moctezuma-Reyes ◽  
...  

Thermal fatigue widely takes place in light water reactor (LWR) piping systems. It is an important aging mechanism of a nuclear reactor. Thermal transient effects occur at the startup and shutdown of a nuclear power plant. During the thermal transients, local and global cyclic stresses are induced in the piping systems. They are exacerbated by local geometric imperfections and environmental factors, which may lead to crack initiation. The elbows of such piping systems are subject to various combinations of loads (internal pressure, bending, and torsion, as well as thermal fluctuations) during their service life. As can be seen, high-stress concentrations are developed in these piping elements. Therefore, it is important to make a failure evaluation. In this paper, a 12” pipe system segment, which was made with SA 106 Gr C steel, has been considered. It was composed by two straight sections joined by a long radius elbow. Typical start-up and shutdown transient effects of a BWR-5 were considered. A computer-aided thermo-mechanical analysis was carried out using the finite element method. The linearization of the stresses was considered, based on the ASME B & PVC Code Section III, subsection NB. Under these conditions, environmental fatigue was analyzed after 40-and 60-years operation.


Sign in / Sign up

Export Citation Format

Share Document