An Investigation of DIR-MCFC Based Cooling, Heating and Power System

Author(s):  
Indraneel Samanta ◽  
Ramesh K. Shah ◽  
Ali Ogut

The fuel cell is an emerging technology for stationary power generation because of their higher energy conversion efficiency and extremely low environmental pollution. Fuel cell systems with cogeneration have even higher overall efficiency. Cogeneration can be defined as simultaneous production of electric power and useful heat from burning of single fuel. A fuel cell produces electrical energy by electrolytic process involving chemical reaction between H2 (fuel) and O2 (Air). Previous works have focussed on running the system in combination with gas turbines. We investigate the possibility of running an absorption chiller as a cogeneration system focussing on a 250 kW Direct Internal Reforming Molten Carbonate Fuel Cell (DIR-MCFC) powering a LiBr-Water absorption chiller. The objective of this work is to propose a cogeneration system capable of enhancing the profitability and efficiency of a MCFC for independent distributed power generation. Natural gas is used as fuel and O2 is used from atmospheric air. Two possibilities are evaluated to recover heat from the exhaust of the MCFC: (1) all waste heat available being used for providing hot water in the building and powering an absorption chiller in summer, and (2) hot water supply and space heating in winter. There is an increased cost saving for each case along with improved system efficiency. Based on these considerations payback period for each case is presented.

Author(s):  
K. Inoue ◽  
E. Harada ◽  
J. Kitajima ◽  
K. Tanaka

This research seeks to propose an atmospheric pressure turbine (ATP), based on the Inverted Brayton Cycle, which puts new, distributed power generation technology to practical use by using various gases at normal pressures and high temperature, from industrial furnaces, waste gasification furnaces, gas turbines, and fuel cells which work at high temperatures, (ex. MCFC: Molten Carbonate Fuel Cell, SOFC: Solid Oxide Fuel Cell) and attempts to save energy and reduce CO2. However, no research has been presented about the operation of a real APT. This paper describes a review of the effectiveness of APT, and shows an outline for the results of a trial run, as well as the production of an APT prototype. The simulation results using a process simulator “HYSYS” show that a 30 kW system has a generator end efficiency (LHV) of about 32%, which is comparable to the performance of other equipment of a similar power rating, such as micro gas turbines. Based on this simulation result we build a 3–5 kW APT prototype and operate. The result of this operation clarifies the basic characteristics of an APT including a performance of 8.7% thermal efficiency. An APT has a smaller specific power than a gas turbine. Accordingly, since its mechanical and dissipative heat losses are larger by comparison, it is important to reduce these losses to attain higher efficiency. Our APT was operated stably and the possibility can be used as a new system for distributed power generation using waste heat was confirmed.


2000 ◽  
Author(s):  
Jose Luz Silveira ◽  
Elisângela Martins Leal

Abstract In this paper, a methodology for the study of a molten carbonate fuel cell cogeneration system and applied to a computer center building is developed. This system permits the recovery of waste heat, available between 600°C and 700°C, which can be used to the production of steam, hot and cold water, hot and cold air, depending on the recuperation equipment associated. Initially, some technical information about the most diffusing types of the fuel cell demonstration in the world are presented. In conclusion, the fuel cell cogeneration system may have an excellent opportunity to strengthen the decentralized energy production in the Brazilian tertiary sector.


Author(s):  
Piero Lunghi ◽  
Stefano Ubertini

The efficient end environmentally friendly production of electricity is undoubtedly one of the 21st century priorities. Since renewable sources will be able to guarantee only a share of the future demand, the present research activity must focus on innovative energy devices and improved conversion systems and cycles. Great expectations are reserved to fuel cell systems. The direct conversion from chemical to electrical energy eliminates environmental problems connected with combustion and bypass the stringent efficiency limit due to Carnot’s principle. Still in infancy high temperature Fuel cells present the further advantage of feasible cycle integration with steam or gas turbines. In this paper, a Molten Carbonate Fuel Cell plant is simulated in a cycle for power generation. The introduction of an external combustion Gas Turbine is evaluated with the aim of efficiency and net power output increase. The results show that the proposed cycle can be conveniently used as a source of power generation. As compared to internal combustion Gas Turbine hybrid cycles found in literature the plant is characterized by fuel cell greater simplicity, due to the absence of pressurization, and gas turbine increased complexity, due to the presence of the heat exchange system.


2005 ◽  
Vol 3 (4) ◽  
pp. 375-383 ◽  
Author(s):  
Petar Varbanov ◽  
Jiří Klemeš ◽  
Ramesh K. Shah ◽  
Harmanjeet Shihn

A new view is presented on the concept of the combined cycle for power generation. Traditionally, the term “combined cycle” is associated with using a gas turbine in combination with steam turbines to better utilize the exergy potential of the burnt fuel. This concept can be broadened, however, to the utilization of any power-generating facility in combination with steam turbines, as long as this facility also provides a high-temperature waste heat. Such facilities are high temperature fuel cells. Fuel cells are especially advantageous for combined cycle applications since they feature a remarkably high efficiency—reaching an order of 45–50% and even close to 60%, compared to 30–35% for most gas turbines. The literature sources on combining fuel cells with gas and steam turbines clearly illustrate the potential to achieve high power and co-generation efficiencies. In the presented work, the extension to the concept of combined cycle is considered on the example of a molten carbonate fuel cell (MCFC) working under stationary conditions. An overview of the process for the MCFC is given, followed by the options for heat integration utilizing the waste heat for steam generation. The complete fuel cell combined cycle (FCCC) system is then analyzed to estimate the potential power cost levels that could be achieved. The results demonstrate that a properly designed FCCC system is capable of reaching significantly higher efficiency compared to the standalone fuel cell system. An important observation is that FCCC systems may result in economically competitive power production units, comparable with contemporary fossil power stations.


2002 ◽  
Vol 124 (4) ◽  
pp. 858-866 ◽  
Author(s):  
P. Lunghi ◽  
S. Ubertini

The efficient end environmentally friendly production of electricity is undoubtedly one of the 21st century priorities. Since renewable sources will be able to guarantee only a share of the future demand, the present research activity must focus on innovative energy devices and improved conversion systems and cycles. Great expectations are reserved to fuel cell systems. The direct conversion from chemical to electrical energy eliminates environmental problems connected with combustion and bypass the stringent efficiency limit due to Carnot’s principle. Still in infancy, high-temperature fuel cells present the further advantage of feasible cycle integration with steam or gas turbines. In this paper, a molten carbonate fuel cell plant is simulated in a cycle for power generation. The introduction of an external combustion gas turbine is evaluated with the aim of efficiency and net power output increase. The results show that the proposed cycle can be conveniently used as a source of power generation. As compared to internal combustion gas turbine hybrid cycles found in the literature the plant is characterized by fuel cell greater simplicity, due to the absence of pressurization, and gas turbine increased complexity, due to the presence of the heat exchange system.


Author(s):  
K. Tanaka ◽  
K. Inoue ◽  
J. Kitajima ◽  
M. Kazari ◽  
S. Nitta ◽  
...  

This research seeks to report the development of a 50kW output power atmospheric pressure turbine (APT), based on the Inverted Brayton Cycle, which puts new, distributed power generation technology to practical use by using as energy source gases at normal pressures and high temperature, from industrial furnaces, waste gasification furnaces, gas turbines, and fuel cells which work at high temperatures, (ex. MCFC: Molten Carbonate Fuel Cell, SOFC: Solid Oxide Fuel Cell) and attempts to save energy and reduce CO2. At the last conference (ASME Turbo Expo 2006 in Barcelona), we had presented a paper about the proposal of APT and the results of operation of a 3–5kw APT prototype. This paper describes the designing of a new 50kW output power APT, and shows performance analysis and a review of the effectiveness of its application to industrial furnaces and biomass gasification furnaces. This development is based on a 3–5 kW APT prototype we had built and operated, and evaluated results. The performance simulation results using a general process simulator “HYSYS” show that a new 50kW APT (with recuperating heat exchanger) has a net electric efficiency (LHV) of about 20%. Based on this simulation result, we calculated the power and economical performance of application to industrial furnaces and biomass boilers. The results of these calculations clarify the basic characteristics of a new APT, which can be used as a new system for distributed power generation using waste heat.


Sign in / Sign up

Export Citation Format

Share Document