decentralized energy
Recently Published Documents


TOTAL DOCUMENTS

378
(FIVE YEARS 154)

H-INDEX

26
(FIVE YEARS 7)

2022 ◽  
Vol 308 ◽  
pp. 118310
Author(s):  
Mehdi Mehdinejad ◽  
Heidarali Shayanfar ◽  
Behnam Mohammadi-Ivatloo

2022 ◽  
Vol 8 (2) ◽  
pp. 14-26
Author(s):  
Alessandro de Freitas D’ercole ◽  
Gabriel Tessarin Menin Silva ◽  
João Guilherme Barbosa Dos Santos ◽  
Eduarda Regina Carvalho

Nowadays the search for new forms of energy generation is one of the great challenges of humanity. Decentralized energy production as well as material recycling, in order to obtain low-cost environmental gains, are extremely important points, as they are issues that must be evaluated in parallel with sustainable development, being extremely discussed and disseminated for their relevance and importance, since the main focus certainly corresponds the environmental preservation of the planet. In view of this theme, in the present work, a prototype was built using Tesla turbine and a dynamo couplet, aiming at the decentralized energy generation model, for the recharge of lead-acid batteries concomitantly with the challenge of reaching an innovative and unprecedented device with economic and environmental gains. The developed system was made and structured from the manufacture of various accessories obtained from recyclable materials attached to its structure, through the improvement of the physical model during its manufacture until the performance of experimental tests investigating its functionality. The results show that the projected system responded significantly to what was proposed, where the dynamo generated current for the system, providing 12 V in the physical model, recharging the battery. In view of the results obtained, it is believed that the prototype has great potential, in a characteristic line and direction, where with the improvement of the structure and diversification of components it is possible to become a new proposal, that is, an innovative device that meets expectations at an affordable price, being a decentralized model of energy generation and environmentally friendly.


2022 ◽  
pp. 77-90
Author(s):  
Hadjira Belaidi ◽  
Zakaria Rabiai

In these last decades, electrical power grids become more intelligent. Hence, sophisticated software and hardware were introduced to the power grid, which makes it a smart grid. This chapter is an introduction on smart-grid technology; thus, microgrids are explained, and the use of multiagent system in centralized/decentralized energy management systems are discussed and compared. Smart agents are an emerging technology for decentralized computation and data storage. Hence, in this chapter, decentralized energy management system is created basing on multi-agent system technique where sources and loads are considered as separated agents each of them. After that, these sources and load create a microgrid and each microgrid can be considered as an agent. The work proposes an approach for load supplying optimization to decrease the microgrid cost and enhance its efficiency.


2021 ◽  
pp. 146808742110583
Author(s):  
Ioannis Nikiforakis ◽  
Zhongnan Ran ◽  
Michael Sprengel ◽  
John Brackett ◽  
Guy Babbit ◽  
...  

Solid oxide fuel cells (SOFCs) have been deployed in hybrid decentralized energy systems, in which they are directly coupled to internal combustion engines (ICEs). Prior research indicated that the anode tailgas exiting the SOFC stack should be additionally exploited due to its high energy value, with typical ICE operation favoring hybridization due to matching thermodynamic conditions during operation. Consequently, extensive research has been performed, in which engines are positioned downstream the SOFC subsystem, operating in several modes of combustion, with the most prevalent being homogeneous compression ignition (HCCI) and spark ignition (SI). Experiments were performed in a 3-cylinder ICE operating in the latter modus operandi, where the anode tailgas was assimilated by mixing syngas (H2: 33.9%, CO: 15.6%, CO2: 50.5%) with three different water vapor flowrates in the engine’s intake. While increased vapor content significantly undermined engine performance, brake thermal efficiency (BTE) surpassed 34% in the best case scenario, which outperformed the majority of engines operating under similar operating conditions, as determined from the conducted literature review. Nevertheless, the best performing application was identified operating under HCCI, in which diesel reformates assimilating SOFC anode tailgas, fueled a heavy duty ICE (17:1), and gross indicated thermal efficiency ([Formula: see text]) of 48.8% was achieved, with the same engine exhibiting identical performance when operating in reactivity-controlled compression ignition (RCCI). Overall, emissions in terms of NOx and CO were minimal, especially in SI engines, while unburned hydrocarbons (UHC) were non-existent due to the absence of hydrocarbons in the assessed reformates.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7864
Author(s):  
Sophie Adams ◽  
Donal Brown ◽  
Juan Pablo Cárdenas Álvarez ◽  
Ruzanna Chitchyan ◽  
Michael J. Fell ◽  
...  

In recent years, numerous studies have explored the opportunities and challenges for emerging decentralized energy systems and business models. However, few studies have focussed specifically on the economic and social value associated with three emerging models: peer-to-peer energy trading (P2P), community self-consumption (CSC) and transactive energy (TE). This article presents the findings of a systematic literature review to address this gap. The paper makes two main contributions to the literature. Firstly, it offers a synthesis of research on the social and economic value of P2P, CSC and TE systems, concluding that there is evidence for a variety of sources of social value (including energy independence, local benefits, social relationships, environmental responsibility and participation and purpose) and economic value (including via self-consumption of renewable electricity, reduced electricity import costs, and improved electricity export prices). Secondly, it identifies factors and conditions necessary for the success of these models, which include willingness to participate, participant engagement with technology, and project engagement of households and communities, among other factors. Finally, it discusses conflicts and trade-offs in the value propositions of the models, how the three models differ from one another in terms of the value they aim to deliver and some of the open challenges that require further attention by researchers and practitioners.


Sign in / Sign up

Export Citation Format

Share Document