Effect of Tubercles Shape on the Aerodynamic Performance of a Wind Turbine Blade Operating at Low Reynolds Number

Author(s):  
D. S. Swasthika ◽  
Mahesh K. Varpe

Abstract In wind turbine blade, most of the losses occurs due to aerodynamic losses in the post stall operating condition. Adoption of the blade leading edge tubercles improves the post stall aerodynamic performance. Nevertheless the geometric parameters of the protuberance play a vital role in influencing the aerodynamic performance, it is possible that shape of the protuberance may also have aerodynamic significance. In this paper different types of tubercle shapes are adopted on the blade leading edge to study the improvement in the aerodynamic performance. Each of the shape is studied for different AOA operating at Reynolds number of 3 × 105. The results revealed that the shape of the tubercles also influence the flow which affects the performances.

Author(s):  
Kousuke Nushi ◽  
Shingo Kasai ◽  
Kazuyuki Toda ◽  
Makoto Yamamoto ◽  
Makoto Iida ◽  
...  

The attention for a wind power-generator has been attracted as one of the solutions for the environmental problems. When a wind turbine is operated in winter, supercooled water droplets impinge on the blade surface, and as the result ice accretes around the leading edge. It is well known that the occurrence of ice accretion on the wind turbine blade can lead to the severe deterioration of aerodynamic performance. However, the experiment is difficult, because it is not easy to create repeatedly the accretion conditions in a laboratory. Therefore, CFD is expected as a useful tool to predict and investigate the phenomena. In the present study, we develop the ice accretion code, and apply it to the MEL wind turbine blade. From the computational results, the shape of the ice-accreted blade and the deterioration of aerodynamic performance are numerically investigated.


2020 ◽  
Vol 149 ◽  
pp. 91-102 ◽  
Author(s):  
C. Hasager ◽  
F. Vejen ◽  
J.I. Bech ◽  
W.R. Skrzypiński ◽  
A.-M. Tilg ◽  
...  

2020 ◽  
Vol 5 (1) ◽  
pp. 331-347 ◽  
Author(s):  
Frederick Letson ◽  
Rebecca J. Barthelmie ◽  
Sara C. Pryor

Abstract. Wind turbine blade leading edge erosion (LEE) is a potentially significant source of revenue loss for wind farm operators. Thus, it is important to advance understanding of the underlying causes, to generate geospatial estimates of erosion potential to provide guidance in pre-deployment planning, and ultimately to advance methods to mitigate this effect and extend blade lifetimes. This study focuses on the second issue and presents a novel approach to characterizing the erosion potential across the contiguous USA based solely on publicly available data products from the National Weather Service dual-polarization radar. The approach is described in detail and illustrated using six locations distributed across parts of the USA that have substantial wind turbine deployments. Results from these locations demonstrate the high spatial variability in precipitation-induced erosion potential, illustrate the importance of low-probability high-impact events to cumulative annual total kinetic energy transfer and emphasize the importance of hail as a damage vector.


Sign in / Sign up

Export Citation Format

Share Document