Efficient Boundary Element Methods for the Time-Dependent Convective Diffusion Equation

2003 ◽  
Author(s):  
G. F. Dargush ◽  
M. M. Grigoriev

Higher-order boundary element methods (BEM) are presented for time-dependent convective diffusion in two dimensions. The time-dependent convective diffusion free-space fundamental solutions originally proposed by Carslaw and Jaeger are used to obtain the boundary integral formulation. Boundary element method solutions up to the Peclet number 106 are obtained for an example problem of unsteady convection-diffusion that possesses an exact solution. We investigate the convergence rate and accuracy of the higher-order boundary element formulations. An extremely high accuracy of the BEM solutions for highly convective flows is demonstrated. Moreover, it is shown that the use of time-dependent convective kernels provides an automatic upwinding for the entire range of Peclet numbers and also leads to very efficient algorithms as the Peclet number increases.

2005 ◽  
Vol 127 (10) ◽  
pp. 1138-1150 ◽  
Author(s):  
M. M. Grigoriev ◽  
G. F. Dargush

Several recently developed boundary element formulations for time-dependent convective heat diffusion appear to provide very efficient computational tools for transient linear heat flows. More importantly, these new approaches hold much promise for the numerical solution of related nonlinear problems, e.g., Navier–Stokes flows. However, the robustness of these methods has not been examined, particularly for high Peclet number regimes. Here, we focus on these regimes for two-dimensional problems and develop the necessary temporal and spatial integration strategies. The algorithm takes advantage of the nature of the time-dependent convective kernels, and combines analytic integration over the singular portion of the time interval with numerical integration over the remaining nonsingular portion. Furthermore, the character of the kernels lets us define an influence domain and then localize the surface and volume integrations only within this domain. We show that the localization of the convective kernels becomes more prominent as the Peclet number of the flow increases. This leads to increasing sparsity and in most cases improved conditioning of the global matrix. Thus, iterative solvers become the primary choice. We consider two representative example problems of heat propagation, and perform numerical investigations of the accuracy and stability of the proposed higher-order boundary element formulations for Peclet numbers up to 105.


1994 ◽  
Vol 47 (10) ◽  
pp. 457-499 ◽  
Author(s):  
Masataka Tanaka ◽  
Vladimir Sladek ◽  
Jan Sladek

This review article deals with the regularization of the boundary element formulations for solution of boundary value problems of continuum mechanics. These formulations may be singular owing to the use of two-point singular fundamental solutions. When the physical interpretation is irrelevant for this topic of computational mechanics, we consider various mechanical problems simultaneously within particular sections selected according to the main topic. In spite of such a structure of the paper, applications of the regularization techniques to many mechanical problems are described. There are distinguished two main groups of regularization techniques according to their application to singular formulations either before or after the discretization. Further subclassification of each group is made with respect to basic principles employed in individual regularization techniques. This paper summarizes the substances of the regularization procedures which are illustrated on the boundary element formulation for a scalar potential field. We discuss the regularizations of both the strongly singular and hypersingular integrals, occurring in the boundary integral equations, as well as those of nearly singular and nearly hypersingular integrals arising when the source point is near the integration element (as compared to its size) but not on this element. The possible dimensional inconsistency (or scale dependence of results) of the regularization after discretization is pointed out. Finally, we discuss the numerical approximations in various boundary element formulations, as well as the implementations of solutions of some problems for which derivative boundary integral equations are required.


Author(s):  
M. . M. Grigoriev ◽  
G. F. Dargush

In this presentation, we re-visit the poly-region boundary element methods (BEM) proposed earlier for the steady Navier-Stokes [1] and Boussinesq [2] flows, and develop a novel higher-order BEM formulation for the thermoviscous fluid flows that involves the definition of the domains of kernel influences due to steady Oseenlets. We introduce region-by-region implementation of the steady-state Oseenlets within the poly-region boundary element fequatramework, and perform integration only over the (parts of) higher-order boundary elements and volume cells that are influenced by the kernels. No integration outside the domains of the kernel influences are needed. Owing to the properties of the convective Oseenlets, the kernel influences are very local and propagate upstream. The localization becomes more prominent as the Reynolds number of the flow increases. This improves the conditioning of the global matrix, which in turn, facilitates an efficient use of the iterative solvers for the sparse matrices [3]. Here, we consider quartic boundary elements and bi-quartic volume cells to ensure a high level resolution in space. Similar to the previous developments [4–6], coefficients of the discrete boundary integral equations are evaluated with the sufficient precision using semi-analytic approach to ensure exceptional accuracy of the boundary element formulation. To demonstrate the attractiveness of the poly-region BEM formulation, we consider a numerical example of the well-known Rayleigh-Benard problem governed by the Boussinesq equations.


1979 ◽  
Vol 44 (4) ◽  
pp. 1218-1238
Author(s):  
Arnošt Kimla ◽  
Jiří Míčka

The problem of convective diffusion toward the sphere in laminar flow around the sphere is solved by combination of the analytical and net methods for the region of Peclet number λ ≥ 1. The problem was also studied for very small values λ. Stability of the solution has been proved in relation to changes of the velocity profile.


1983 ◽  
Vol 48 (6) ◽  
pp. 1571-1578 ◽  
Author(s):  
Ondřej Wein

Theory has been formulated of a convective rotating spherical electrode in the creeping flow regime (Re → 0). The currently available boundary layer solution for Pe → ∞ has been confronted with an improved similarity description applicable in the whole range of the Peclet number.


Sign in / Sign up

Export Citation Format

Share Document