Heat Transfer, Volume 2
Latest Publications


TOTAL DOCUMENTS

256
(FIVE YEARS 0)

H-INDEX

8
(FIVE YEARS 0)

Published By ASME

079184711x

Author(s):  
M. Zugic ◽  
J. R. Culham ◽  
P. Teertstra ◽  
Y. Muzychka ◽  
K. Horne ◽  
...  

Compact, liquid cooled heat sinks are used in applications where high heat fluxes and boundary resistance preclude the use of more traditional air cooling techniques. Four different liquid cooled heat sink designs, whose core geometry is formed by overlapped ribbed plates, are examined. The objective of this analysis is to develop models that can be used as design tools for the prediction of overall heat transfer and pressure drop of heat sinks. Models are validated for Reynolds numbers between 300 and 5000 using experimental tests. The agreement between the experiments and the models ranges from 2.35% to 15.3% RMS.


Author(s):  
R. S. Amano ◽  
J. Xie ◽  
E. K. Lee ◽  
P. K. Rohatgi

A new experimental configuration for the casting of metal matrix composites (MMCs) using Al-4.5 wt pct Cu have been used to obtain finer microstructures around the fiber reinforcement. The new configuration allows the fibers to be extended out the mold and cooled by a heat sink. By doing so, the solidification can be made more rapid, and more primary alpha-aluminum phase can be formed on the surface of the fibers. It is believed that this can lead to improvement in the properties of the composite. CFD simulation of the solidification of Al-4.5 wt pct Cu in the casting process has been carried out by using commercial CFD code. Parametric studies on the effects of different processing parameters on solidification time have been simulated using the CFD code. These parameters include, but are not limited to, the pouring temperature of the liquid melt, sink temperature, fiber length extended out of the mold, the mold initial temperature, fiber conductivity, applied pressure, and fiber bundle diameter. Selected simulation results are compared with the available experimental data obtained from the UWM Center for Composites.


Author(s):  
K. M. Akyuzlu ◽  
Y. Pavri ◽  
A. Antoniou

A two-dimensional, mathematical model is adopted to investigate the development of buoyancy driven circulation patterns and temperature contours inside a rectangular enclosure filled with a compressible fluid (Pr=1.0). One of the vertical walls of the enclosure is kept at a higher temperature then the opposing vertical wall. The top and the bottom of the enclosure are assumed insulated. The physics based mathematical model for this problem consists of conservation of mass, momentum (two-dimensional Navier-Stokes equations) and energy equations for the enclosed fluid subjected to appropriate boundary conditions. The working fluid is assumed to be compressible through a simple ideal gas relation. The governing equations are discretized using second order accurate central differencing for spatial derivatives and first order forward finite differencing for time derivatives where the computation domain is represented by a uniform orthogonal mesh. The resulting nonlinear equations are then linearized using Newton’s linearization method. The set of algebraic equations that result from this process are then put into a matrix form and solved using a Coupled Modified Strongly Implicit Procedure (CMSIP) for the unknowns (primitive variables) of the problem. A numerical experiment is carried out for a benchmark case (driven cavity flow) to verify the accuracy of the proposed solution procedure. Numerical experiments are then carried out using the proposed compressible flow model to simulate the development of the buoyancy driven circulation patterns for Rayleigh numbers between 103 and 105. Finally, an attempt is made to determine the effect of compressibility of the working fluid by comparing the results of the proposed model to that of models that use incompressible flow assumptions together with Boussinesq approximation.


Author(s):  
A. Agrawal ◽  
G. Biswas ◽  
S. W. J. Welch ◽  
F. Durst

The bubble formation and heat transfer on a horizontal surface have been numerically analyzed using a volume of fluid (VOF) based interface tracking method incorporated into a complete solution of the Navier-Stokes and the thermal energy equations. The numerical method took into account the effects of surface tension, the interface mass transfer and the corresponding latent heat. The computations demonstrated capability of the algorithm in generating quantitative information on unsteady periodic bubble release patterns and on the spatially and temporally varying film thickness. The computations also predict the transport coefficients on the horizontal surface.


Author(s):  
P. Bhattacharya ◽  
S. Nara ◽  
P. Vijayan ◽  
T. Tang ◽  
W. Lai ◽  
...  

A nanofluid is a fluid containing suspended solid particles, with sizes of the order of nanometers. The nanofluids are better conductors of heat than the base fluid itself. Therefore it is of interest to measure the effective thermal conductivity of such a nanofluid. We use temperature oscillation technique to measure the thermal conductivity of the nanofluid. However, first we evaluate the temperature oscillation technique as a tool to measure thermal conductivity of water. Then we validate our experimental setup by measuring the thermal conductivity of the aluminum oxide-water nanofluid and comparing our results with previously published work. Finally, we do a systematic series of measurements of the thermal conductivities of aluminum oxide-water nanofluids at various temperatures and explain the reasons behind the dependence of the enhancement in thermal conductivity of the nanofluid on temperature.


Author(s):  
Konstantin I. Matveev ◽  
Scott Backhaus ◽  
Gregory W. Swift

Thermoacoustic engines and refrigerators use the interaction between heat and sound to produce acoustic energy or to transport thermal energy. Heat leaks in thermal buffer tubes and pulse tubes, components in thermoacoustic devices that separate heat exchangers at different temperatures, reduce the efficiency of these systems. At high acoustic amplitudes, Rayleigh mass streaming can become the dominat means for undesirable heat leak. Gravity affects the streaming flow patterns and influences streaming-induced heat convection. A simplified analytical model is constructed that shows gravity can reduce the streaming heat leak dramatically.


Author(s):  
David L. Damm ◽  
Andrei G. Fedorov

Thermo-mechanical failure of components in planar-type solid oxide fuel cells (SOFCs) depends strongly on the local temperature gradients at the interfaces of different materials. Therefore, it is of paramount importance to accurately predict the temperature fields within the stack, especially near the interfaces. Because of elevated operating temperatures (of the order of 1000 K or even higher), radiation heat transfer could become a dominant mode of heat transfer in the SOFCs. In this study, we extend our recent work on radiative effects in solid oxide fuel cells (Journal of Power Sources, Vol. 124, No. 2, pp. 453–458) by accounting for the spectral dependence of the radiative properties of the electrolyte material. The measurements of spectral radiative properties of the polycrystalline yttria-stabilized zirconia (YSZ) electrolyte we performed indicate that an optically thin approximation can be used for treatment of radiative heat transfer. To this end, the Schuster-Schwartzchild two-flux approximation is used to solve the radiative transfer equation (RTE) for the spectral radiative heat flux, which is then integrated over the entire spectrum using an N-band approximation to obtain the total heat flux due to thermal radiation. The divergence of the total radiative heat flux is then incorporated as a heat sink into a 3-D thermo-fluid model of a SOFC through the user-defined function utility in the commercial FLUENT CFD software. The results of sample calculations are reported and compared against the baseline cases when no radiation effects are included and when the spectrally gray approximation is used for treatment of radiative heat transfer.


Author(s):  
William D. York ◽  
James H. Leylek

A new film-cooling scheme for the suction surface of a gas turbine vane in a transonic cascade is studied numerically. The concept of the present design is to inject a substantial amount of coolant at a very small angle, approaching a “wall-jet,” through a single row of relatively few, large holes near the vane leading edge. The near-match of the coolant stream and mainstream momentums, coupled with the low coolant trajectory, theoretically results in low aerodynamic losses due to mixing. A minimal effect of the film cooling on the vane loading is also important to realize, as well as good coolant coverage and high adiabatic effectiveness. A systematic computational methodology, developed in the Advanced Computational Research Laboratory (ACRL) and tested numerous times on film-cooling applications, is applied in the present work. For validation purposes, predictions from two previous turbine airfoil film-cooling studies, both employing this same numerical method, are presented and compared to experimental data. Simulations of the new film-cooling configuration are performed for two blowing ratios, M=0.90 and M=1.04, and the density ratio of the coolant to the mainstream flow is unity in both cases. A solid vane with no film cooling is also studied as a reference case in the evaluation of losses. The unstructured numerical mesh contains about 5.5 million finite-volumes, after solution-based adaption. Grid resolution is such that the full boundary layer and all passage shocks are resolved. The Renormalization Group (RNG) k-ε turbulence model is used to close the Reynolds-averaged Navier-Stokes equations. Predictions indicate that the new film-cooling scheme meets design intent and has negligible impact on the total pressure losses through the vane cascade. Additionally, excellent coolant coverage is observed all the way to the trailing edge, resulting in high far-field effectiveness. Keeping the design environment in mind, this work represents the power of validated computational methods to provide a rapid and reasonably cost-effective analysis of innovative turbine airfoil cooling.


Author(s):  
Hyung Gyu Park ◽  
Ming-Tsang Lee ◽  
Frank K. Hsu ◽  
Costas P. Grigoropoulos ◽  
Ralph Greif ◽  
...  

An experimental and analytical study of the reacting flow in a catalytic reactor is presented. Methanol-steam reforming may be utilized in the fuel processing system for hydrogen fuel cells. Understanding the flow and transport phenomena as well as the reaction mechanisms is essential for improving the efficiency of the reforming process as well as the quality of the processed fuel. Utilizing the results obtained, optimized conditions for fuel processing are discussed.


Author(s):  
Anoosheh Niavarani-Kheirier ◽  
Masoud Darbandi ◽  
Gerry E. Schneider

The main objective of the current work is to utilize Lattice Boltzmann Method (LBM) for simulating buoyancy-driven flow considering the hybrid thermal lattice Boltzmann equation (HTLBE). After deriving the required formulations, they are validated against a wide range of Rayleigh numbers in buoyancy-driven square cavity problem. The performance of the method is investigated on parallel machines using Message Passing Interface (MPI) library and implementing domain decomposition technique to solve problems with large order of computations. The achieved results show that the code is highly efficient to solve large scale problems with excellent speedup.


Sign in / Sign up

Export Citation Format

Share Document