Heat Transfer: Volume 3
Latest Publications


TOTAL DOCUMENTS

113
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Published By ASMEDC

0791836959

2003 ◽  
Author(s):  
Edward R. Champion

This paper summarizes the practical use of CFD (Computational Fluid Dynamics) using a commercially available package, FLOTHERM [1], in a tight and highly competitive marketplace to produce a functional pre-production piece of telecom gear with no prototyping for thermal issues. The paper highlights the direct production, noprototype, analytical thermal performance verification of a small CMTS (Cable Modem Termination System) used in telecom applications.


Author(s):  
Nathan W. Klingbeil ◽  
Srikanth Bontha

The ability to predict and control microstructure in laser deposited materials requires an understanding of the thermal conditions at the onset of solidification. To this end, the focus of this work is the development of thermal process maps relating solidification cooling rate and thermal gradient (the key parameters controlling microstructure) to laser deposition process variables (e.g., laser power and velocity). Results presented herein are based on the Rosenthal solution for a moving point heat source traversing an infinite substrate. Ongoing work includes the effect of a distributed laser power through superposition of the Rosenthal solution, while the effects of finite geometry, temperature dependent properties and latent heat of transformation are included through thermal finite element modeling of the laser deposition process.


2003 ◽  
Author(s):  
Hao Leng ◽  
Liejin Guo ◽  
Ximin Zhang ◽  
Hongbin Min ◽  
G.-X. Wang

Impinging jet is widely used in both traditional industrial and new high-tech fields. High efficiency heat transfer in impinging jet cooling makes it an important method for heat transfer enhancement, in particular in cooling of electronic devices with high heat density. This paper presents an experimental study of heat transfer by an impinging circular water jet. A Constantan foil with the size of 5 mm × 5 mm was used to simulate a microelectronic chip with heat generated by passing an electrical current through the foil. A high heat flux over 106 W/m2 was achieved. The surface temperature was measured by a thermocouple glued onto the back surface of the foil. Both a free surface jet and a submerged jet were investigated. Effect of the nozzle-to-surface spacing as well as the jet speed at the exit of the nozzle on cooling was examined. By positioning the jet away from the center of the heating foil surface, the radial variation of the heat transfer coefficients over the foil was also investigated. Quantitative heat transfer data have been obtained and analyzed.


Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


Author(s):  
Tunc Icoz ◽  
Qinghua Wang ◽  
Yogesh Jaluria

Natural convection has important implications in many applications like cooling of electronic equipment due to its low cost and easy maintenance. In the present study, two-dimensional natural convection heat transfer to air from multiple identical protruding heat sources, which simulate electronic components, located in a horizontal channel has been studied numerically. The fluid flow and temperature profiles, above the heating elements placed between an adiabatic lower plate and an isothermal upper plate, are obtained using numerical simulation. The effects of source temperatures, channel dimensions, openings, boundary conditions, and source locations on the heat transfer from and flow above the protruding sources are investigated. Different configurations of channel dimensions and separation distances of heat sources are considered and their effects on natural convection heat transfer characteristics are studied. The results show that the channel dimensions have a significant effect on fluid flow. However, their effects on heat transfer are found to be small. The separation distance is found to be an important parameter affecting the heat transfer rate. The numerical results of temperature profiles are compared with the experimental measurements performed using Filtered Rayleigh Scattering (FRS) technique in an earlier study, indicating good agreement. It is observed that adiabatic upper plate assumption leads to better temperature predictions than isothermal plate assumption.


Author(s):  
Lijun Liu ◽  
Koichi Kakimoto

In order to control the impurity distribution and remove defects in a crystal grown in Czochralski growth for high quality crystals of silicon, it is necessary to study and control the melt-crystal interface shape, which plays an important role in control of the crystal quality. The melt-crystal interface interacts with and is determined by the convective thermal flow of the melt in the crucible. Application of magnetic field in the Czochralski system is an effective tool to control the convective thermal flow in the crucible. Therefore, the shape of the melt-crystal interface can be modified accordingly. Numerical study is performed in this paper to understand the effect of magnetic field on the interface deflection in Czochralski system. Comparisons have been carried out by computations for four arrangements of the magnetic field: without magnetic field, a vertical magnetic field and two types of cusp-shaped magnetic field. The velocity, pressure, thermal and electromagnetic fields are solved with adaptation of the mesh to the iteratively modified interface shape. The multi-block technique is applied to discretize the melt field in the crucible and the solid field of silicon crystal. The unknown shape of the melt-crystal interface is achieved by an iterative procedure. The computation results show that the magnetic fields have obvious effects on both the pattern and strength of the convective flow and the interface shape. Applying magnetic field in the Czochralski system, therefore, is an effective tool to control the quality of bulk crystal in Czochralski growth process.


2003 ◽  
Author(s):  
Lijun Xu ◽  
Jamil A. Khan

A comprehensive axisymmetric model of the coupled thermal-electrical-mechanical analysis predicting weld nugget development and residual stresses for the resistance spot welding process of Al-alloys is developed. The model estimates the heat generation at the faying surface, the workpiece-electrode interface, and the Joule heating of the workpiece and electrode. The phase change due to melting in the weld pool is considered. The contact area and its pressure distribution at both the faying surface and the electrode-workpiece interface are determined from a coupled thermal-mechanical model using a finite element method. The knowledge of the interface pressure provides accurate prediction of the interfacial heat generation. For the numerical model, temperature dependent thermal, electrical and mechanical properties are used. The proposed model can successfidly calculate the nugget diameter and thickness, and predict the residual stresses and the elastic-plastic deformation history. The calculated nugget shape and the deformation of sheets based on the model are compared with the experimental data. The computed residual stresses approach the distribution of experimental measurement of the residual stress.


Author(s):  
P. Bhattacharya ◽  
S. K. Saha ◽  
A. Yadav ◽  
P. E. Phelan ◽  
R. S. Prasher

A nanofluid is a fluid containing suspended solid particles, with sizes of the order of nanometers. Normally the fluid has a low thermal conductivity compared to the suspended particles. Therefore introduction of these particles into the fluid increases the effective thermal conductivity of the system. It is of interest to predict the effective thermal conductivity of such a nanofluid under different conditions like varying particle volume fraction, varying particle size, changing fluid conductivity or changing fluid viscosity, especially since only limited experimental data are available. Also, some controversy exists about the role of Brownian motion in enhancing the nanofluid’s thermal conductivity. We have developed a novel technique to compute the effective thermal conductivity of a nanofluid using Brownian dynamics simulation, which has the advantage of being computationally less expensive than molecular dynamics. We obtain the contribution of the nanoparticles towards the effective thermal conductivity using the equilibrium Green-Kubo method. Then we combine that with the thermal conductivity of the base fluid to obtain the effective thermal conductivity of the nanofluid, and thus are able to show that the Brownian motion contributes greatly to the thermal conductivity.


Author(s):  
Tien-Chien Jen ◽  
Rajendra Jadhav

Thermal management using heat pipes is gaining significant attention in past decades. This is because of the fact that it can be used as an effective heat sink in very intricate and space constrained applications such as in electronics cooling or turbine blade cooling where high heat fluxes are involved. Extensive research has been done in exploring various possible applications for the use of heat pipes as well as understanding and modeling the behavior of heat pipe under those applications. One of the possible applications of heat pipe technology is in machining operations, which involves a very high heat flux being generated during the chip generation process. Present study focuses on the thermal management of using a heat pipe in a drill for a drilling process. To check the feasibility and effectiveness of the heat pipe drill, structural and thermal analyses are performed using Finite Element Analysis. Finite Element Software ANSYS was used for this purpose. It is important for any conceptual design to be made practical and hence a parametric study was carried out to determine the optimum geometry size for the heat pipe for a specific standard drill.


2003 ◽  
Author(s):  
Kris L. Jorgensen ◽  
Satish Ramadhyani ◽  
Raymond Viskanta

Three firing schemes for an industrial oxygen-fired glass melting furnace were examined to determine the thermal performance and relative merits of each scheme. A comprehensive computer model was used to investigate the effects of each scheme on the combustion and heat transfer in the furnace. The three-dimensional computer model, suitable for predicting and analyzing fluid flow, combustion and heat transfer has been used to simulate the combustion space of the furnace. The turbulent flow field is obtained by solving the Favre averaged Navier-Stokes equations and using the k-ε model to calculate the turbulent shear stresses and close the equation set. The combustion model consists of a single step, irreversible, infinitely fast reaction. A mixture fraction is used to track the mixing of fuel and oxidant and thus reaction progress in this mixing limited model. An assumed shape PDF method is utilized to account for turbulent fluctuations. Radiative heat transfer in the combustion gases and between surfaces is modeled using the discrete ordinates method coupled with the weighted-sum-of-gray-gases model. The model furnace for all three firing schemes was the same size and shape, was charged from the rear end wall and was pulled from the front wall. The three schemes investigated were: 1) non-interlaced side-wall fired, 2) interlaced side-wall fired, and 3) end fired. The results show that all three arrangements provide similar thermal performance and heat transfer characteristics. However, the flow field for the non-interlaced arrangement is very complex in the region where jets from opposing walls meet at the furnace center line. This type of jet interference can lead to unstable flow, particularly at the centerline of the furnace. Unstable flow conditions can affect the heat transfer characteristics of the furnace and make the furnace difficult to operate. Conversely, the interlaced and end-fired schemes do not exhibit the jet interference seen in the non-interlaced arrangement. While the results indicate that the thermal performance of all three arrangements were similar, the possibility of jet interference suggests that an interlaced or end-fired arrangement is preferable.


Sign in / Sign up

Export Citation Format

Share Document