Simulation of Electroosmotic Flows in Micro- and Nanochannels Using a Lattice Boltzmann Model

Author(s):  
Fuzhi Tian ◽  
Baoming Li ◽  
Daniel Y. Kwok

A Lattice Boltzman Model (LBM) with the Poisson-Boltzmann equation for charge distribution is presented for the simulation of electroosmotic transport in straight rectangular micro and nanochannels. Our results from the LBM are in excellent agreement with the corresponding analytical solution. We have shown that the Lattice Boltzmann Model in the presence of an external force may be used an effective computational tool to simulate the electroosmotic transport phenomena in micro- and nanochannels.

Author(s):  
KUN QU ◽  
CHANG SHU ◽  
JINSHENG CAI

In this paper, a new flux solver was developed based on a lattice Boltzmann model. Different from solving discrete velocity Boltzmann equation and lattice Boltzmann equation, Euler/Navier-Stokes (NS) equations were solved in this approach, and the flux at the interface was evaluated with a compressible lattice Boltzmann model. This method combined lattice Boltzmann method with finite volume method to solve Euler/NS equations. The proposed approach was validated by some simulations of one-dimensional and multi-dimensional problems.


Sign in / Sign up

Export Citation Format

Share Document