approximate analytical solution
Recently Published Documents


TOTAL DOCUMENTS

441
(FIVE YEARS 107)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Alemayehu Tamirie Deresse

In this paper, the combined double Sumudu transform with iterative method is successfully implemented to obtain the approximate analytical solution of the one-dimensional coupled nonlinear sine-Gordon equation (NLSGE) subject to the appropriate initial and boundary conditions which cannot be solved by applying double Sumudu transform only. The solution of the nonlinear part of this equation was solved by a successive iterative method, the proposed technique has the advantage of producing an exact solution, and it is easily applied to the given problems analytically. Two test problems from mathematical physics were taken to show the liability, accuracy, convergence, and efficiency of the proposed method. Furthermore, the results indicate that the introduced method is promising for solving other types of systems of NLPDEs.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 57
Author(s):  
Belal Batiha

In this article, the Daftardar-Gejji and Jafari method (DJM) is used to obtain an approximate analytical solution of the sine-Gordon equation. Some examples are solved to demonstrate the accuracy of DJM. A comparison study between DJM, the variational iteration method (VIM), and the exact solution are presented. The comparison of the present symmetrical results with the existing literature is satisfactory.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Sajad Iqbal ◽  
Mohammed K. A. Kaabar ◽  
Francisco Martínez

In this article, the approximate analytical solutions of four different types of conformable partial differential equations are investigated. First, the conformable Laplace transform homotopy perturbation method is reformulated. Then, the approximate analytical solution of four types of conformable partial differential equations is presented via the proposed technique. To check the accuracy of the proposed technique, the numerical and exact solutions are compared with each other. From this comparison, we conclude that the proposed technique is very efficient and easy to apply to various types of conformable partial differential equations.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Reginald Christian Bernardo

AbstractWe study inflationary dynamics using a recently introduced classical-quantum correspondence for investigating the backreaction of a quantum mechanical degree of freedom to a classical background. Using specifically a coupled Einstein–Klein–Gordon system, an approximation that holds well during the very early inflationary era when modes are very deep inside the Hubble horizon, we show that the backreaction of a mode of the quantum field will renormalize the Hubble parameter only if the mode’s wavelength is longer than some threshold Planckian length scale. Otherwise, the mode will destabilize the inflationary era. We also present an approximate analytical solution that supports the existence of such short-wavelength threshold and compare the results of the classical-quantum correspondence with the traditional perturbative-iterative method in semiclassical gravity.


2021 ◽  
Vol 147 (10) ◽  
pp. 06021015
Author(s):  
Bo Wang ◽  
Fengjie Zhang ◽  
Xin Liu ◽  
Yakun Guo ◽  
Jianmin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document