Intelligent Cruise Control Systems and Traffic Flow Behavior

1999 ◽  
Author(s):  
Darbha Swaroop ◽  
K. R. Rajagopal

Abstract In analogy to the flow of fluids, it is expected that the aggregate density and the velocity of vehicles in a section of a freeway adequately describe the traffic flow dynamics. The conservation of mass equation together with the aggregation of the vehicle following dynamics of controlled vehicles describes the evolution of the traffic density and the aggregate speed of a traffic flow. There are two kinds of stability associated with traffic flow problems — string stability (or car-following stability) and traffic flow stability. We make a clear distinction between traffic flow stability and string stability, and such a distinction has not been recognized in the literature, thus far. String stability is stability with respect to intervehicular spacing; intuitively, it ensures the knowledge of the position and velocity of every vehicle in the traffic, within reasonable bounds of error, from the knowledge of the position and velocity of a vehicle in the traffic. String stability is analyzed without adding vehicles to or removing vehicles from the traffic. On the other hand, traffic flow stability deals with the evolution of traffic velocity and density in response to the addition and/or removal of vehicles from the flow. Traffic flow stability can be guaranteed only if the velocity and density solutions of the coupled set of equations is stable, i.e., only if stability with respect to automatic vehicle following and stability with respect to density evolution is guaranteed. Therefore, the flow stability and critical capacity of any section of a highway is dependent not only on the vehicle following control laws and the information used in their synthesis, but also on the spacing policy employed by the control system. Such a dependence has practical consequences in the choice of a spacing policy for adaptive cruise control laws and on the stability of the traffic flow consisting of vehicles equipped with adaptive cruise control features on the existing and future highways. This critical dependence is the subject of investigation in this paper. This problem is analyzed in two steps: The first step is to understand the effect of spacing policy employed by the Intelligent Cruise Control (ICC) systems on traffic flow stability. The second step is to understand how the dynamics of ICC system affects traffic flow stability. Using such an analysis, it is shown that cruise control systems that employ a constant time headway policy lead to unacceptable characteristics for the traffic flows.

Author(s):  
Yu Zhang ◽  
Yu Bai ◽  
Jia Hu ◽  
Meng Wang

Communication delay is detrimental to the performance of cooperative adaptive cruise control (CACC) systems. In this paper, we incorporate communication delay explicitly into control design and propose a delay-compensating CACC. In this new CACC system, the semi-constant time gap (Semi-CTG) policy, which is modified on the basis of the widely-used CTG policy, is employed by a linear feedback control law to regulate the spacing error. The semi-CTG policy uses historical information of the predecessor instead of its current information. By doing so, communication delay is fully compensated, which leads to better stability performance. Three stability properties—local stability, string stability, and traffic flow stability—are analyzed. The local stability and string stability of the proposed CACC system are guaranteed with the desired time gap as small as the communication delay. Both theoretical analysis and simulation results show that the delay-compensating CACC has better string stability and traffic flow stability than the widely-used CACC system. Furthermore, the proposed CACC system also shows the potential for improving traffic throughput and fuel efficiency. Robustness of the proposed system against uncertainties of sensor delay and vehicle dynamics is also verified with simulation.


Author(s):  
Joel Vander Werf ◽  
Steven E. Shladover ◽  
Mark A. Miller ◽  
Natalia Kourjanskaia

Sign in / Sign up

Export Citation Format

Share Document