Fluid-Structure Interaction Simulation With Free Surface Flows by Smoothed Particle Hydrodynamics

Author(s):  
M. H. Farahani ◽  
N. Amanifard ◽  
H. Asadi ◽  
M. Mahnama

Simulation of the fluid-structure interaction (FSI) and free surface flows includes an area of extremely challenging problems in the computational mechanics community. In this paper, a newly proposed SPH algorithm is employed to simulate FSI problems with complex free surface flows. In this way, fluid and elastic structure continua are coupled using a monolithic but explicit numerical scheme. The proposed method is similar to so-called SPH projection method and consists of three steps. The first two steps play the role of prediction, while in the third step a Poisson equation is used for both fluid and structure to impose incompressibility constraint.

2021 ◽  
Vol 2116 (1) ◽  
pp. 012122
Author(s):  
Eugenio Schillaci ◽  
Federico Favre ◽  
Peter Troch ◽  
Assensi Oliva

Abstract In this work we present a numerical framework to carry-out numerical simulations of fluid-structure interaction phenomena in free-surface flows. The framework employs a single-phase method to solve momentum equations and interface advection without solving the gas phase, an immersed boundary method (IBM) to represent the moving solid within the fluid matrix and a fluid structure interaction (FSI) algorithm to couple liquid and solid phases. The method is employed to study the case of a single point wave energy converter (WEC) device, studying its free decay and its response to progressive linear waves.


PAMM ◽  
2003 ◽  
Vol 3 (1) ◽  
pp. 412-413 ◽  
Author(s):  
Andreas Kölke ◽  
Elmar Walhorn ◽  
Björn Hübner ◽  
Dieter Dinkler

Sign in / Sign up

Export Citation Format

Share Document