incompressibility constraint
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Xingtong Yang ◽  
Ming Li ◽  
Liangchao Zhu ◽  
Weidong Zhong

Abstract Multi-material topology optimization problem under total mass constraint is a challenging problem owning to the incompressibility constraint on the summation of the usage of the total materials. A novel optimization approach is proposed here that utilizes the wide search space of the genetic algorithm, and greatly reduced computational effects achieved from the direct structure-performance mapping. The former optimization is carefully designed based on our recent theoretical insights, while the latter simulation is derived via a novel convolutional neural network based simulation which does not rely on any labeled simulation data but is instead designed based on a physics-informed loss function. As compared with results obtained using latest approach based on density interpolation, structures of better compliances are observed under acceptable computational costs, as demonstrated by our numerical examples.



Author(s):  
Ruoyu Huang ◽  
Raymond W. Ogden ◽  
Raimondo Penta

AbstractGrowth in nature is associated with the development of residual stresses and is in general heterogeneous and anisotropic at all scales. Residual stress in an unloaded configuration of a growing material provides direct evidence of the mechanical regulation of heterogeneity and anisotropy of growth. The present study explores a model of stress-mediated growth based on the unloaded configuration that considers either the residual stress or the deformation gradient relative to the unloaded configuration as a growth variable. This makes it possible to analyze stress-mediated growth without the need to invoke the existence of a fictitious stress-free grown configuration. Furthermore, applications based on the proposed theoretical framework relate directly to practical experimental scenarios involving the “opening-angle” in arteries as a measure of residual stress. An initial illustration of the theory is then provided by considering the growth of a spherically symmetric thick-walled shell subjected to the incompressibility constraint.



2020 ◽  
Vol 86 (3) ◽  
Author(s):  
P. J. Morrison ◽  
T. Andreussi ◽  
F. Pegoraro

The incompressibility constraint for fluid flow was imposed by Lagrange in the so-called Lagrangian variable description using his method of multipliers in the Lagrangian (variational) formulation. An alternative is the imposition of incompressibility in the Eulerian variable description by a generalization of Dirac’s constraint method using noncanonical Poisson brackets. Here it is shown how to impose the incompressibility constraint using Dirac’s method in terms of both the canonical Poisson brackets in the Lagrangian variable description and the noncanonical Poisson brackets in the Eulerian description, allowing for the advection of density. Both cases give the dynamics of infinite-dimensional geodesic flow on the group of volume preserving diffeomorphisms and explicit expressions for this dynamics in terms of the constraints and original variables is given. Because Lagrangian and Eulerian conservation laws are not identical, comparison of the various methods is made.



2019 ◽  
Vol 86 (10) ◽  
Author(s):  
P. Mythravaruni ◽  
K. Y. Volokh

Most soft materials resist volumetric changes much more than shape distortions. This experimental observation led to the introduction of the incompressibility constraint in the constitutive description of soft materials. The incompressibility constraint provides analytical solutions for problems which, otherwise, could be solved numerically only. However, in the present work, we show that the enforcement of the incompressibility constraint in the analysis of the failure of soft materials can lead to somewhat nonphysical results. We use hyperelasticity with energy limiters to describe the material failure, which starts via the violation of the condition of strong ellipticity. This mathematical condition physically means inability of the material to propagate superimposed waves because cracks nucleate perpendicular to the direction of a possible wave propagation. By enforcing the incompressibility constraint, we sort out longitudinal waves, and consequently, we can miss cracks perpendicular to longitudinal waves. In the present work, we show that such scenario, indeed, occurs in the problems of uniaxial tension and pure shear of natural rubber. We also find that the suppression of longitudinal waves via the incompressibility constraint does not affect the consideration of the material failure in equibiaxial tension and the practically relevant problem of the failure of rubber bearings under combined shear and compression.



2019 ◽  
Vol 25 ◽  
pp. 41 ◽  
Author(s):  
Marco Cicalese ◽  
Nicola Fusco

We consider multiple integrals of the Calculus of Variations of the form E(u) = ∫ W(x, u(x), Du(x)) dx where W is a Carathéodory function finite on matrices satisfying an orientation preserving or an incompressibility constraint of the type, det Du > 0 or det Du = 1, respectively. Under suitable growth and lower semicontinuity assumptions in the u variable we prove that the functional ∫ Wqc(x, u(x), Du(x)) dx is an upper bound for the relaxation of E and coincides with the relaxation if the quasiconvex envelope Wqc of W is polyconvex and satisfies p growth from below for p bigger then the ambient dimension. Our result generalises a previous one by Conti and Dolzmann [Arch. Rational Mech. Anal. 217 (2015) 413–437] relative to the case where W depends only on the gradient variable.



2015 ◽  
Vol 41 (2) ◽  
pp. 532-541
Author(s):  
Dan Lin ◽  
Brent A. French ◽  
Yaqin Xu ◽  
John A. Hossack ◽  
Jeffrey W. Holmes


2014 ◽  
Vol 61 (1-2) ◽  
pp. 61-83
Author(s):  
Ryszard Staroszczyk

Abstract In this paper the problem of transient gravitational wave propagation in a viscous incompressible fluid is considered, with a focus on flows with fast-moving free surfaces. The governing equations of the problem are solved by the smoothed particle hydrodynamics method (SPH). In order to impose the incompressibility constraint on the fluid motion, the so-called projection method is applied in which the discrete SPH equations are integrated in time by using a fractional-step technique. Numerical performance of the proposed model has been assessed by comparing its results with experimental data and with results obtained by a standard (weakly compressible) version of the SPH approach. For this purpose, a plane dam-break flow problem is simulated, in order to investigate the formation and propagation of a wave generated by a sudden collapse of a water column initially contained in a rectangular tank, as well as the impact of such a wave on a rigid vertical wall. The results of simulations show the evolution of the free surface of water, the variation of velocity and pressure fields in the fluid, and the time history of pressures exerted by an impacting wave on a wall.



2013 ◽  
Vol 14 (4) ◽  
pp. 1120-1146
Author(s):  
Eric T. Chung ◽  
Jeff C.-F. Wong

AbstractLinear/nonlinear and Stokes based-stabilizations for the filter equations for damping out primitive variable (PV) solutions corrupted by uniformly distributed random noises are numerically studied through the natural convection (NC) as well as the mixed convection (MC) environment. The most recognizable filter-scheme is based on a combination of the negative Laplace equation multiplied with the selection of the spatial scale and a linear function in order to preserve the uniqueness of the filtered solution. A more complicated filter-scheme, based on a Stokes problem which couples a filtered velocity and a filtered (artificial) pressure (or Lagrange multiplier) in order to enforce the incompressibility constraint, is also studied. Linear and Stokes based-filters via nested iterative (NI) filters and the consistent splitting scheme (CSS) are proposed for the NC/MC problems. Inspired by the total-variation (TV) model of image diffusion, well preserved feature flow patterns from the corrupted NC/MC environment are obtained by TV-Stokes based-filters together with the CSS. Our experimental results show that our proposed algorithms are effective and efficient in eliminating the unwanted spurious oscillations and preserving the accuracy of thermal convective fluid flows.



Sign in / Sign up

Export Citation Format

Share Document