Finite Element Analysis Applied in Structural Integrity Management

Author(s):  
Jacob Dybwad ◽  
Mads Bryndum ◽  
Russell Hollingworth

During the periodic inspection of the Alvheim subsea system 2013 a number of cracks were observed at the Mid Water Arch (MWA) tether anchoring arrangement. The MWA and associated anchor block are critical design elements. Detailed investigations were initiated in order to determine future development of the cracks and their severity. The application of advanced non-linear finite element analysis as part of the inspection and maintenance strategy resulted in significant cost savings compared to a solution based on immediate mitigation action. This paper describes the background for occurrence of these cracks and the analyses used to determine their development: • The cracks are located in non-loadbearing locking brackets. The function of the brackets is primarily to secure the pins connecting the top part of the tether hinge to the anchor block. • During construction the locking brackets were welded to the pin and to the tether hinge. This way the non-structural element became part of the load bearing system resulting in very high stresses in the bracket and subsequent crack development. It could not immediately be excluded that the cracks observed could initiate further cracking into main bearing parts of the hinge. • FE modeling using Abaqus [1] was used to analyze the criticality of the situation. Non-linear material properties and removal of elements were applied in order to simulate crack initiation and crack growth. The system was analyzed by modelling the load paths from initial assembly on land, installation loads and finally the loads during operation. Removal of elements was introduced to replicate the crack growth pattern observed on ROV still photos from periodic surveys 2012 and 2013. The analysis documented the principle mechanism behind the crack development and further demonstrated that the risk of failure of any of the load bearing elements was negligible. The results of the analysis provided the necessary documentation for the appropriate precautions and at the same time plan for execution of mitigation measures which would have minimal economic impact.

2015 ◽  
Vol 815 ◽  
pp. 49-53
Author(s):  
Nur Fitriah Isa ◽  
Mohd Zulham Affandi Mohd Zahid ◽  
Liyana Ahmad Sofri ◽  
Norrazman Zaiha Zainol ◽  
Muhammad Azizi Azizan ◽  
...  

In order to promote the efficient use of composite materials in civil engineering infrastructure, effort is being directed at the development of design criteria for composite structures. Insofar as design with regard to behavior is concerned, it is well known that a key step is to investigate the influence of geometric differences on the non-linear behavior of the panels. One possible approach is to use the validated numerical model based on the non-linear finite element analysis (FEA). The validation of the composite panel’s element using Trim-deck and Span-deck steel sheets under axial load shows that the present results have very good agreement with experimental references. The developed finite element (FE) models are found to reasonably simulate load-displacement response, stress condition, giving percentage of differences below than 15% compared to the experimental values. Trim-deck design provides better axial resistance than Span-deck. More concrete in between due to larger area of contact is the factor that contributes to its resistance.


2012 ◽  
Vol 28 ◽  
pp. e15-e16
Author(s):  
L.H.A. Raposo ◽  
L.C.M. Dantas ◽  
T.A. Xavier ◽  
A.G. Pereira ◽  
A. Versluis ◽  
...  

2005 ◽  
Author(s):  
Bill Shi ◽  
Donald Liu ◽  
Christopher Wiernicki

The emerging global economic needs are driving the designs for the next generation of ocean going vessels. Current ultra-large container carrier (10,000 TEU plus) designs are considerably larger and more complex than any currently in service. Proper and rational classification assessment requires that first principles based direct calculation methods be used to augment the standard classification review. The design philosophy behind the ABS Dynamic Loading Approach enables comprehensive identification of potential failure mechanisms. The scope of the necessary engineering assessment encompass full-ship finite element analysis under non-linear sea loads, spectral fatigue analysis, finite element lashing analysis, free and forced vibration analysis, and transient and impact load analysis. This paper describes key aspects of the DLA design philosophy such as non-linear sea loads, load combinations, various applications derived from full-ship finite element analysis. Several examples are given to highlight some critical failure mechanisms to be considered for ultra-large container carriers.


Sign in / Sign up

Export Citation Format

Share Document